亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于計算機視覺的大米外觀品質(zhì)檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    開發(fā)了一套基于計算機視覺技術(shù)的稻谷品質(zhì)檢測系統(tǒng),采用灰度變換、自動閾值分割、區(qū)域標記等方法從采集的稻米群體圖像中提取單體米粒圖像,對單體米粒的裂紋、堊白特征進行了統(tǒng)計和檢測方法研究。提取了米粒的面積、周長等10 個特征參數(shù)作為整精米檢測特征,并進行了主成分分析,確定了判別整精米的優(yōu)化閾值。檢測試驗結(jié)果表明:裂紋米粒識別的準確率為96.41 %;堊白米粒識別的準確率為94.79%;整精米識別的準確率為

    Abstract:

    96.20%。 The quality of rice is the main factor that affects the market price of rice. Today, the detecting and grading of rice are mainly carried out by manual ways, which is time-consuming and toilful, and even easily leads to improper judgment. A detecting system of rice quality based on computer vision was developed in this paper. The methods that segmenting single kernel from mass rice image using gray transformation, automatic threshold segmentation, and region marking were discussed. In order to detect the head rice ratio, ten parameters were selected from the profile of rice kernels, such as the area and perimeter of rice kernel, the two axes of the equivalent oval, the inspection of the profile of rice kernel and head rice rate were discussed after using the principal components of the profile parameters of rice kernel. The results of detecting experiments on five varieties of rice indicated that the accurate ratio of detecting fissure is about 96.41%, the accurate ratio of chalkiness detecting is about 94.79%, and the correct ratio of detecting head rice is about 96.20%.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳彥紅,劉木華,楊君,鄭華東.基于計算機視覺的大米外觀品質(zhì)檢測[J].農(nóng)業(yè)機械學報,2007,38(7):107-111.[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(7):107-111.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: