亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于支持向量機(jī)的缺陷紅棗機(jī)器視覺識(shí)別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在棗的干制過程中形成的油頭棗、漿頭棗、霉?fàn)€棗是最常見的缺陷棗,它們整體或局部顏色偏暗、偏黑,有必要通過機(jī)器視覺技術(shù)將其識(shí)別出來。在HIS顏色空間中,提取H的均值和均方差作為紅棗的顏色特征值,利用支持向量機(jī)識(shí)別缺陷紅棗。實(shí)驗(yàn)結(jié)果表明,識(shí)別準(zhǔn)確率可以達(dá)到96.2%,優(yōu)于人工神經(jīng)網(wǎng)絡(luò)的

    Abstract:

    89.4%。During the production and storage of Chinese dates, some of them are easy to mould rot because of high water content. The defect dates appear darker than the normal ones. Based on support vector machine, the recognition of the defect Chinese date machine vision was proposed. After the acquisition of the Chinese dates images, the color model was changed from RGB to HIS. Then, the average value H and standard square deviation value σH of dates hue values were calculate. Depending on the two values, there was few overlaps between defect dates and normal ones in the plot of H and σH. Therefore, H and σH were treated as the feature parameters. Artificial neural network (ANN) and support vector machine (SVM) model were used to analysis the dates features respectively. The experimental results show that SVM has a better performance than ANN on distinguish defect Chinese dates from normal ones, and the correct recognition rate of SVM is 96.2%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙杰文,劉少鵬,鄒小波,石吉勇,殷小平.基于支持向量機(jī)的缺陷紅棗機(jī)器視覺識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(3):113-115.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(3):113-115.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: