亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

DOSC在花椒揮發(fā)油含量近紅外光譜分析中的應(yīng)用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應(yīng)用近紅外光譜分析技術(shù),采用偏最小二乘法,對141份花椒粉末樣品近紅外光譜建立揮發(fā)油含量定量模型,交叉驗證測定系數(shù)R2為0.936,交叉驗證誤差均方根RMSECV為0.421,經(jīng)直接正交信號校正(DOSC)預(yù)處理后,相應(yīng)的交叉驗證測定系數(shù)R2提高到0.95,RMSECV減小為0.374。使用105份樣品近紅外光譜所建立的模型對36份樣品的預(yù)測集進行預(yù)測,光譜采用DOSC預(yù)處理前后,預(yù)測測定系數(shù)R2由0.923提高到0.969,RMSEP由0.452減小到0.289,RSD由11.65%減小到7.44%,RPD由3.622增加到5.573。研究結(jié)果表明,使用DOSC預(yù)處理后的花椒揮發(fā)油含量近紅外光譜定量模型的預(yù)測效果有較大的提高,且具有較好的穩(wěn)定性和較強的預(yù)測能力,可用于實際的花椒揮發(fā)油檢測。

    Abstract:

    Based on near infrared spectroscopy technique and partial least squares (PLS), calibration model of volatile oil content of 141 powder samples with particle size of 40 meshes was established to classify Zanthoxylum bungeagum Maxim more rapidly. After spectra were preprocessed by direct orthogonal signal correction (DOSC), the determination coefficient (R2) increased from 0.936 to 0.95 and the root mean square error of cross validation (RMSECV) decreased from 0.421 to 0.374. Applying the model established by 105 samples to the test set with 36 samples, R2 increased from 0.923 to 0.969, the root mean square error of prediction (RMSEP) decreased from 0.452 to 0.289, RPD increased from 3.622 to 5.573 and RSD decreased from 11.65% to 7.44% after spectra were preprocessed by DOSC. The research indicated that the model preprocessed by DOSC is better, and the precision of model got higher. The result showed that rapid detection of volatile oil content in Zanthoxylum bungeagum Maxim by NIR and DOSC is feasible and efficient. 

    參考文獻
    相似文獻
    引證文獻
引用本文

祝詩平,王剛,尹雄,蘭雪冬,任德齊. DOSC在花椒揮發(fā)油含量近紅外光譜分析中的應(yīng)用[J].農(nóng)業(yè)機械學(xué)報,2008,39(4):104-107.[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(4):104-107.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: