亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

農(nóng)用車輛作業(yè)環(huán)境障礙物檢測方
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Detection in the Working Area of Agricultural Vehicle Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對聯(lián)合收獲機視覺導航系統(tǒng)中的視覺測障,提出了一種基于單目彩色圖像分割測障與立體視覺特征匹配測障相結(jié)合的測障方法:利用H、S顏色分量對單目圖像實施固定閾值分割并二值化,獲得潛在障礙物的位置及區(qū)域;采用尺度空間不變(SIFT)算法獲取潛在障礙物區(qū)域特征;采用近似最近鄰分類算法(ANN)進行快速特征匹配,獲得潛在障礙物的世界坐標,由此進一步確認障礙物以及障礙物與車輛之間的距離。提出了提高算法效率的措施,分析了圖像壓縮比與運行時間、SIFT特征數(shù)以及匹配數(shù)之間的關系。試驗表明,在有障礙物的情況下,檢測時間不超過

    Abstract:

    200ms。 Obstacle detection is a key component of autonomous systems. A obstacle detection method combined monocular vision and stereo vision is studied for the vision navigated combine harvester. For monocular vision detection, H and S components are used to segment the image acquired by the left camera mounted on the combine harvester, and then through the fixed threshold value and binary processing the potential obstacle area is located. For stereo vision, the SIFT features are extracted from the potential obstacle area, and the ANN algorithm is utilized to get matching points. According to the obtained world coordinates the obstacle and the distance from the vehicle are calculated. In order to reduce the processing time the coefficient of image size linear transform is analyzed and it shows that the matching points are enough to satisfy the system need and the processing time is less than 200?ms when the coefficient is 4.0. The experiment using various mature wheat videos indicates that the method is valid to detect obstacles in front of the vehicle.

    參考文獻
    相似文獻
    引證文獻
引用本文

丁幼春,王書茂,陳紅.農(nóng)用車輛作業(yè)環(huán)境障礙物檢測方[J].農(nóng)業(yè)機械學報,2009,40(Z1):23-27. Detection in the Working Area of Agricultural Vehicle Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(Z1):23-27.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: