亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于動(dòng)態(tài)聚集距離的多目標(biāo)粒子群優(yōu)化算法及其應(yīng)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


-objective Particle Swarm Optimization Algorithm Based on Dynamic Crowding Distance and Its Application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了增加Pareto集的多樣性,提高多目標(biāo)優(yōu)化的全局尋優(yōu)能力,提出了一種基于動(dòng)態(tài)聚集距離的多目標(biāo)粒子群算法(DCD-MOPSO)。該算法利用改進(jìn)的快速排序方法來減少計(jì)算量,采用動(dòng)態(tài)變化的慣性權(quán)重和加速因子以增強(qiáng)算法的全局尋優(yōu)能力,并基于動(dòng)態(tài)聚集距離對(duì)外部集進(jìn)行維護(hù)以增加Pareto集的多樣性。通過典型測(cè)試函數(shù)的仿真實(shí)驗(yàn)和應(yīng)用實(shí)例對(duì)DCD-MOPSO算法性能進(jìn)行了分析,并與多目標(biāo)優(yōu)化算法MOPSO和NSGA-Ⅱ進(jìn)行了比較。結(jié)果表明,DCD-MOPSO算法收斂速度較快,且得到的Pareto集分布均勻。

    Abstract:

    A multi-objective particle swarm optimization algorithm based on dynamic crowding distance (DCD-MOPSO) was proposed. Applying the improved quick sorting to reduce the time for computation, both the dynamic inertia weight and acceleration coefficients were used in the algorithm to explore the search space more efficiently. A new diversity strategy called dynamic crowding distance was used to ensure sufficient diversity amongst the solutions of the non-dominated fronts. Some benchmark functions and the optimization of four-bar plane truss were tested to compare with the performance of DCD-MOPSO and NSGA-Ⅱ. The results show that DCD-MOPSO has better convergence with even distributing of Pareto set.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉麗琴,張學(xué)良,謝黎明,李明磊,溫淑花,盧青波.基于動(dòng)態(tài)聚集距離的多目標(biāo)粒子群優(yōu)化算法及其應(yīng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(3):189-194.-objective Particle Swarm Optimization Algorithm Based on Dynamic Crowding Distance and Its Application[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(3):189-194.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: