亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于遺傳模糊神經(jīng)網(wǎng)絡(luò)的植物病斑區(qū)域圖像分割模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Image Segmentation Model of Plant Lesion Based on Genetic Algorithm and Fuzzy Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對植物病斑區(qū)域圖像邊界的模糊性和不確定性因素,利用模糊邏輯的推理規(guī)則和神經(jīng)網(wǎng)絡(luò)的自適應(yīng)性,提出全規(guī)則的自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)模型作為植物病葉圖像像素歸屬的決策系統(tǒng),并利用遺傳算法對系統(tǒng)的可調(diào)整參數(shù)初始值進行全局優(yōu)化,提高了網(wǎng)絡(luò)訓(xùn)練速度,避免了傳統(tǒng)BP算法的局部最小值。通過對馬鈴薯早疫病病斑圖像分割的實驗表明,該模型速度快且穩(wěn)定,精度高且魯棒性好,簡單易于實現(xiàn)。

    Abstract:

    Aiming at the ambiguity and uncertainty of lesion field image border, using inference rule of fuzzy logic and self-adaptive of neural network, the self-adaptive and fuzzy neural network model was proposed to be the decisionsystem for extracting the diseased spots, and the initial values of adjusting parameters were optimized by using genetic algorithm which enhanced the speed of network training, overcame the local minimum of traditional gradient descent method. The experimental result showed that model had many advantages including accuracy, convergence, stability, robustness, and was easy to implement when implied in extracting the diseased spots of potato early blight.

    參考文獻
    相似文獻
    引證文獻
引用本文

關(guān)海鷗,許少華,譚峰.基于遺傳模糊神經(jīng)網(wǎng)絡(luò)的植物病斑區(qū)域圖像分割模型[J].農(nóng)業(yè)機械學(xué)報,2010,41(11):163-167. Image Segmentation Model of Plant Lesion Based on Genetic Algorithm and Fuzzy Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(11):163-167.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼