亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于熵值組合預(yù)測和多時相遙感的春玉米估產(chǎn)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(40871159、40571111、40371083);“十一五”國家科技支撐計劃資助項目(2006BAD10A01);國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2007AA12Z139)


Spring Maize Yield Estimation Based on Combination of Forecasting of Entropy Method and Multi-temporal Remotely Sensed Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用基于熵值的組合預(yù)測方法構(gòu)建高精度遙感估產(chǎn)模型,對黑龍江軍川農(nóng)場2007年和2008年春玉米的主要生育期多時相Landsat TM/ETM+影像數(shù)據(jù)分別建立單一時相的估產(chǎn)模型,通過信息熵賦予各個時相估產(chǎn)模型的權(quán)系數(shù),構(gòu)建組合估產(chǎn)模型,然后對組合估產(chǎn)模型和單一時相估產(chǎn)模型進(jìn)行對比分析。結(jié)果表明:基于熵值的組合估產(chǎn)模型能夠有效提高估產(chǎn)精度,與最佳的單時相遙感估產(chǎn)模型相比,2007年和2008年的組合估產(chǎn)模型的相關(guān)系數(shù)絕對值分別提高了0.137和0.121;根據(jù)組合估產(chǎn)模型的權(quán)系數(shù)大小,能夠獲得限制玉米產(chǎn)量的主要生態(tài)障礙因素和提高玉米產(chǎn)量的方法。因此,基于熵值組合預(yù)測和多時相遙感構(gòu)建估產(chǎn)模型用于春玉米估產(chǎn)是有效、可行的。

    Abstract:

    A highly accurate model for crop yield estimation was developed by using the entropy combination forecasting method. Firstly, the single-temporal remotely sensed Landsat TM/ETM+ images at main growth and development stages of spring maize in 2007 and 2008 were used to construct the single-temporal yield estimation models. Secondly, the weights of the single-temporal estimation models were calculated by applying the entropy methods. And then, a combination forecasting model was developed. Finally, the two models were compared. The results showed that the yield estimation model based on combination forecasting and multi-temporal remote images could increase the precision of the yield estimation model based on single-temporal remote images, and the correlation coefficient was remarkably improved in comparison with those of the single-temporal models. They were increased by 0.137 and 0.121 respectively. The values of weights in the combined forecasting showed that the sensitive degree was displayed between main growing stages and maize yield, and that was of great importance for some key aspects: (1) looking for the main limiting factor of maize growth; (2) raising maize yield. Therefore, it is feasible and effective to estimate spring maize yield based on the combined forecasting of entropy method and multi-temporal remotely sensed data. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘇濤,王鵬新,劉翔舸,楊博.基于熵值組合預(yù)測和多時相遙感的春玉米估產(chǎn)[J].農(nóng)業(yè)機械學(xué)報,2011,42(1):186-192. Su Tao, Wang Pengxin, Liu Xiangge, Yang Bo. Spring Maize Yield Estimation Based on Combination of Forecasting of Entropy Method and Multi-temporal Remotely Sensed Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(1):186-192.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: