亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于神經(jīng)網(wǎng)絡(luò)的數(shù)控插補(bǔ)容錯(cuò)技術(shù)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家科技重大專項(xiàng)資助項(xiàng)目(2009ZX04014-013-01)


ANN-based Fault Tolerance of CNC Interpolation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出將神經(jīng)網(wǎng)絡(luò)和模糊數(shù)學(xué)應(yīng)用到數(shù)控系統(tǒng)軟件設(shè)計(jì)領(lǐng)域,以實(shí)現(xiàn)數(shù)控插補(bǔ)容錯(cuò)技術(shù),提高軟件可靠性。為了驗(yàn)證該方法的可行性,對(duì)基于神經(jīng)網(wǎng)絡(luò)的NURBS插補(bǔ)模塊進(jìn)行了實(shí)驗(yàn)研究,并對(duì)速度、加速度、插補(bǔ)精度、神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)精度、容錯(cuò)和實(shí)時(shí)性等方面進(jìn)行了分析。實(shí)驗(yàn)結(jié)果表明,基于神經(jīng)網(wǎng)絡(luò)的插補(bǔ)模塊在保證加工要求的前提下實(shí)現(xiàn)了數(shù)控插補(bǔ)軟件容錯(cuò)技術(shù),為提高數(shù)控系統(tǒng)軟件的可靠性提供了新的途徑。

    Abstract:

    Artificial neural network (ANN) and fuzzy math were introduced to the design filed of CNC software for realizing the fault tolerance of CNC interpolation and improving the reliability of software. In addition, function aspects (velocity, acceleration, chord error, prediction accuracy, fault tolerance, real time ) from the experiment on non-uniform rational B-spline (NURBS) interpolator based on ANN were evaluated in detail. The experimental results show that the NURBS interpolation based on ANN can not only meet the requirements of the function aspects, but also realize the fault tolerance of CNC interpolation, which may provide a new strategy in the improvement of the reliability of CNC software. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王義強(qiáng),袁修華,馬明陽,胡艷娟.基于神經(jīng)網(wǎng)絡(luò)的數(shù)控插補(bǔ)容錯(cuò)技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(7):215-219. Wang Yiqiang, Yuan Xiuhua, Ma Mingyang, Hu Yanjuan. ANN-based Fault Tolerance of CNC Interpolation[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(7):215-219.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: