亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于CARS-PLS的食用油脂肪酸近紅外定量分析模型優(yōu)化
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

北京市優(yōu)秀人才資助項目(20081D0500300130)


NIR Quantitative Model Optimization of Fatty Acid in Edible Oil Based on CARS-PLS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    采用CARS波長變量挑選方法優(yōu)化建模,對食用油中4種主要脂肪酸(棕櫚酸、硬脂酸、油酸和亞油酸)進行近紅外定量分析。應用預測濃度殘差法剔除奇異樣本后,對樣品集光譜進行標準化預處理,通過CARS優(yōu)選出的波長變量分別建立4種脂肪酸的偏最小二乘法(PLS)模型。與采用OPUS軟件自動優(yōu)化建模相比,CARS法所建模型的決定系數(shù)(R2)、交叉校驗均方根誤差(RMSECV)和預測均方根誤差(RMSEP)都優(yōu)于后者所建模型。CARS法有效地簡化了模型,且所挑選出的特征波長較少。

    Abstract:

    Competitive adaptive reweighted sampling (CARS) method was employed to improve the prediction accuracy of the NIR quantitative model of four kinds of fatty acid (palmitic acid, stearic acid, oleic acid and linoleic acid) in edible oil.Predict concentration residual method was employed to detect the outlier before preprocessing the spectroscopy by normalization.The key variables were selected by CARS method.The partial least squares (PLS) calibration models of four kinds of fatty acid were established respectively in the optimal conditions,and compared with the results using OPUS software. Determination coefficient (R2 ),root mean square error of cross validation(RMSECV)and root mean square error of prediction(RMSEP)were used to evaluate the quality of the modes.The results showed that better prediction was obtained by CARS. The result showed that using CARS could effectively simplify the model and the less number of wavelength variables selected could be reference for developing filter spectrometer of edible oil. 

    參考文獻
    相似文獻
    引證文獻
引用本文

吳靜珠,徐云.基于CARS-PLS的食用油脂肪酸近紅外定量分析模型優(yōu)化[J].農(nóng)業(yè)機械學報,2011,42(10):162-166. Wu Jingzhu, Xu Yun. NIR Quantitative Model Optimization of Fatty Acid in Edible Oil Based on CARS-PLS[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):162-166.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: