亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

融合視覺(jué)和激光測(cè)距的機(jī)器人Monte Carlo自定位方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

湖南省自然科學(xué)—湘潭聯(lián)合基金資助項(xiàng)目(09JJ8006);湖南省教育廳科研基金資助項(xiàng)目(11C0347)


Robot Monte Carlo Self-localization Method Based on Combination of Vision Sensors and Laser Range Finder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)移動(dòng)機(jī)器人采用單類傳感器很難成功定位的問(wèn)題,提出一種室內(nèi)環(huán)境下基于異質(zhì)傳感器信息融合的粒子濾波自定位方法。建立激光測(cè)距儀和視覺(jué)傳感器各自感知模型后,利用融合的感知信息進(jìn)行粒子集的更新,從而進(jìn)行自主定位。實(shí)驗(yàn)表明,定位過(guò)程中激光測(cè)距的快速準(zhǔn)確更新特性和視覺(jué)信息的全局性得到互補(bǔ),粒子集比使用單類傳感器時(shí)收斂得更快,提高了移動(dòng)機(jī)器人的自定位精度和速度。

    Abstract:

    With the aim to deal with the localization disadvantage of robot equipped with only single class sensor, a novel mobile robot particle filter self-localization method based on combination of the heterogeneous sensors was proposed. Perception model of LRF (laser range finder sensor) and monocular camera were established, and self-localization was achieved after the particle sets had been updated with fusion perception information. The experimental results showed that characteristics of fast and accurate updates of LRF and global of monocular camera was fully utilized, convergence time of particle sets was reduced by 14.3% than using a single class of sensor, and mobile robot located accuracy was improved by 16.7%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李永堅(jiān).融合視覺(jué)和激光測(cè)距的機(jī)器人Monte Carlo自定位方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(1):170-174. Li Yongjian. Robot Monte Carlo Self-localization Method Based on Combination of Vision Sensors and Laser Range Finder[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(1):170-174.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-01-12
  • 出版日期:
文章二維碼