亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于機(jī)器視覺和支持向量機(jī)的溫室黃瓜識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2006AA10Z259);中央高?;究蒲袠I(yè)務(wù)費(fèi)自主創(chuàng)新項目(KYZ201006);南京農(nóng)業(yè)大學(xué)青年科技創(chuàng)新基金資助項目(KJ09030)


In-greenhouse Cucumber Recognition Based on Machine Vision and Least Squares Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對復(fù)雜溫室環(huán)境中的成熟黃瓜,采用脈沖耦合神經(jīng)網(wǎng)絡(luò)分割黃瓜圖像,利用數(shù)學(xué)形態(tài)學(xué)方法處理,把黃瓜從圖像背景中分離出來;提取各連通區(qū)域的4個幾何特征值和灰度共生矩陣基礎(chǔ)上的3個紋理特征值,作為最小二乘支持向量機(jī)(LS—SVM)的輸入特征向量;利用訓(xùn)練好的分類器判別圖像中的黃瓜。試驗結(jié)果表明:用于試驗的70幅黃瓜圖像,正確識別率達(dá)82.9%,基于脈沖耦合神經(jīng)網(wǎng)絡(luò)分割結(jié)合LS—SVM的方法,適合復(fù)雜背景的溫室黃瓜識別。

    Abstract:

    Pulse coupled neural network (PCNN) and mathematical morphological technologies were employed to separate the mature in-greenhouse cucumber from complex background image. Four geometric feature values and three texture feature values based on gray level co-occurrence matrix (GLCM) of every connected regions in image were extracted, which were the input feature vector of least squares support vector machine (LS—SVM). The trained classifier was used for identifying the cucumber in image. Experimental results showed that 70 cucumber images were used for testing, the average rate of correct identification reach to 82.9% in different conditions, indicating that the method based on PCNN and LS—SVM could be used for in-greenhouse cucumber recognition.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王海青,姬長英,顧寶興,安秋.基于機(jī)器視覺和支持向量機(jī)的溫室黃瓜識別[J].農(nóng)業(yè)機(jī)械學(xué)報,2012,43(3):163-167, 180. Wang Haiqing, Ji Changying, Gu Baoxing, An Qiu. In-greenhouse Cucumber Recognition Based on Machine Vision and Least Squares Support Vector Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(3):163-167, 180.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-03-17
  • 出版日期: