亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

豌豆苗期田間雜草識別與變量噴灑控制系統(tǒng)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省高等學(xué)校省級自然科學(xué)研究重點資助項目(KJ2011A101)


Weed Recognition from Pea Seedling Images and Variable Spraying Control System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以圖像實時控制器CVS—1456為核心設(shè)計了圖像實時識別與變量噴灑系統(tǒng)。在普通光照下分別采集包含豌豆苗、土壤背景、雜草(刺兒菜)等的原始圖像,分析其顏色模型,根據(jù)色差分量R—B顏色特征采用LabVIEW和IMAQ Vision編程實現(xiàn)雜草實時識別?;贑anny算子對識別的雜草進行邊緣檢測,并提取目標(biāo)雜草的面積、密度和形心位置3個特征參數(shù)為變量噴灑定位提供依據(jù)。隨機試驗表明:基于R—B色差分量對豌豆苗期復(fù)雜背景下刺兒菜雜草平均正確識別率達到83.5%,均方差0.066,該方法準(zhǔn)確可靠。

    Abstract:

    The application system of real-time image recognition and variable spraying was designed based on the virtual image real-time controller CVS—1456. The original images, which contained pea seedlings, soil background, weed of cephalanoplos segetum, etc, were collected in normal sunlight. The color models of original images were analyzed and real-time weed recognition was realized based on R—B color features by using LabVIEW software and IMAQ Vision toolbox. The Canny algorithm was employed to detect weed edges, and three characteristic parameters of target weed, namely area, density, centroidal position, were extracted to provide positioning evidences for variable spraying. The random tests verified the accuracy and reliability of the purposed cephalanoplos segetum recognition method from complex background images based on R—B color features, in which the average right recognition rate was 83.5%, mean square deviation 0.066.

    參考文獻
    相似文獻
    引證文獻
引用本文

張小龍,謝正春,張念生,曹成茂.豌豆苗期田間雜草識別與變量噴灑控制系統(tǒng)[J].農(nóng)業(yè)機械學(xué)報,2012,43(11):220-225,73. Zhang Xiaolong, Xie Zhengchun, Zhang Niansheng, Cao Chengmao. Weed Recognition from Pea Seedling Images and Variable Spraying Control System[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(11):220-225,73.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2012-11-16
  • 出版日期:
文章二維碼