亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

綠茶殺青葉料含水率可見-近紅外光譜檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2012AA10A508)、國家自然科學(xué)基金資助項(xiàng)目(31101089)、江蘇省自然科學(xué)基金資助項(xiàng)目(BK2010326)和江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金資助項(xiàng)目(CX(12)3025)


Determination of Water Content in De-enzyming Green Tea Leaves Based on Visible-near Infrared Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)綠茶殺青葉料含水率的快速無損檢測,基于可見-近紅外光譜分析建立含水率的預(yù)測模型。使用FieldSpec 3型便攜式地物光譜儀,采集192個(gè)殺青葉料樣品的漫反射光譜信息,基于X-Y共生距離的樣本劃分算法SPXY,確定144個(gè)樣本的校正集和48個(gè)樣本的預(yù)測集。進(jìn)行一階微分和移動(dòng)平滑濾波預(yù)處理后,采用相關(guān)系數(shù)法優(yōu)選出11個(gè)特征波段,建立了含水率檢測的偏最小二乘回歸、主成分回歸、人工神經(jīng)網(wǎng)絡(luò)及其組合的模型。結(jié)果表明,選用5個(gè)主成分的偏最小二乘回歸模型最佳,其校正和預(yù)測模型的相關(guān)系數(shù)分別為0.990和0.819,均方根誤差分別為0.011和0.037,預(yù)測含水率的平均相對(duì)誤差為3.30%。

    Abstract:

    To determine the moisture content in de-enzyming green tea leaves rapidly and nondestructively, prediction models were established based on visible-near infrared spectroscopy. Diffuse reflection spectra of 192 samples were collected with a portable field spectrometer (FieldSpec 3, ASD), among which 144 samples were partitioned to a calibration set and 48 samples to a prediction set using the sample set partitioning method based on joint X-Y distance. 11 sensitive bands were selected with correlation coefficient method, and then moisture content models of partial least squares and principal component regression, artificial neural network and their combination were established with the preprocessing methods of the first derivative and moving average filter. The model comparison showed that the prediction model of partial least squares regression was the best when 5 principal components were adopted. The calibration and prediction correlation coefficients were 0.990 and 0.819 respectively, and the root mean square errors of calibration and prediction were 0.011 and 0.037 respectively, and the mean error of predicted moisture content was 3.30%. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡永光,陳培培,趙夢龍.綠茶殺青葉料含水率可見-近紅外光譜檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):174-179. Hu Yongguang, Chen Peipei, Zhao Menglong. Determination of Water Content in De-enzyming Green Tea Leaves Based on Visible-near Infrared Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(8):174-179.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-07-19
  • 出版日期: