亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于RBF神經(jīng)網(wǎng)絡(luò)的種豬體重預(yù)測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31072066)、國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)資助項(xiàng)目(201003011)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(KYCX2011082)


Prediction of Pig Weight Based on Radical Basis Function Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)豬體生長(zhǎng)參數(shù)之間具有一定的自相關(guān)性、部分參數(shù)與體重間呈非線性關(guān)系、通過線性回歸模型預(yù)測(cè)豬體體重存在著自變量間共線性及擬合優(yōu)度較低等問題,以52頭長(zhǎng)白母豬的生長(zhǎng)參數(shù)為基礎(chǔ),通過最近鄰聚類算法,構(gòu)建了基于RBF神經(jīng)網(wǎng)絡(luò)的種豬體重預(yù)測(cè)模型。通過線性回歸檢驗(yàn)法對(duì)種豬體重預(yù)測(cè)值與實(shí)測(cè)值進(jìn)行分析,發(fā)現(xiàn)基于RBF神經(jīng)網(wǎng)絡(luò)的長(zhǎng)白種豬體重預(yù)測(cè)模型的擬合優(yōu)度R2為0.998,而線性回歸模型的R2為0.891。結(jié)果表明:通過RBF神經(jīng)網(wǎng)絡(luò)方法建模,消除了線性回歸分析中自變量的共線性問題,預(yù)測(cè)效果優(yōu)于線性回歸模型。

    Abstract:

    There is a certain correlation among the growth parameters of pigs, and some parameters have non-linear relationship with pig weights. When using the simple linear regression model to predict the pig weight, the collinearity among independent variables and low fit goodness were found. For these problems, based on the nearest neighbor clustering algorithm for RBF neural network, a pig weight prediction RBF neural network model was constructed with the growth parameters of 52 Landrace sows. The predicted value and measured value of the pig weight were compared by linear regression test. The regression analysis showed that the goodness of fit (R2) of RBF neural network prediction model for Landrace pig weight was 0.998, while R2 of the linear regression model was only 0.891. The results indicated that the RBF neural network-based modeling method was an effective way to build the prediction model of pig weight. It eliminated the collinearity of the independent variables in linear regression analysis, and forecasted better than linear regression model. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉同海,李卓,滕光輝,羅城.基于RBF神經(jīng)網(wǎng)絡(luò)的種豬體重預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):245-249. Liu Tonghai, Li Zhuo, Teng Guanghui, Luo Cheng. Prediction of Pig Weight Based on Radical Basis Function Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(8):245-249.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-07-19
  • 出版日期: