亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

美國白蛾幼蟲網(wǎng)幕圖像識別算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

山東省自然科學(xué)基金資助項(xiàng)目(ZR2012CQ026、ZR2011EL038);山東省高等學(xué)??萍及l(fā)展計(jì)劃資助項(xiàng)目(J11LD16、J12LB63)


Image Recognition Algorithm of Hlyphantria cunea Larva Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    根據(jù)美國白蛾幼蟲網(wǎng)幕圖像色彩分布特征,選擇RGB顏色空間,分析網(wǎng)幕、葉片和樹枝的各通道數(shù)據(jù)的差值,采用R—B色差模型并結(jié)合最大類間方差法和閾值算法,分割網(wǎng)幕圖像。使用Freeman編碼算法和區(qū)域標(biāo)記計(jì)算出每一區(qū)域的面積,使用多個面積的平均值和標(biāo)準(zhǔn)方差確定面積雙閾值,進(jìn)行殘余噪聲去除。根據(jù)面積分別對大片白色區(qū)域和細(xì)小白色區(qū)域使用改進(jìn)的膨脹腐蝕法進(jìn)行圖像補(bǔ)償。實(shí)驗(yàn)表明,網(wǎng)幕圖像識別精度在85%以上,單幅圖像處理時間小于40ms。

    Abstract:

    According to color distribution characteristics of Hlyphantria cunea larva nets, RGB color space was selected and the data differences of each channel were analyzed for net curtains, leaves and branches. Furthermore, R—B color model with the Otsu method and threshold algorithm were used to segment images. The region labeling and Freeman coding methods were adopted to calculate the area of each region. The double threshold value was determined and residual noise was removed by using the mean and standard deviation of a plurality area. According to the differences between area sizes, fine white and white regions were compensated by using improved expansion corrosion method. Experimental results showed that the accuracy of net curtain image recognition was above 85% and single image processing time was less than 40ms.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙穎,孫群,葛廣英.美國白蛾幼蟲網(wǎng)幕圖像識別算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(9):198-202,208. Zhao Ying, Sun Qun, Ge Guangying. Image Recognition Algorithm of Hlyphantria cunea Larva Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(9):198-202,208.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-09-11
  • 出版日期: