亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于全景視覺的智能農(nóng)業(yè)車輛運動障礙目標檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(31071325)和江蘇省自然科學基金資助項目(BK2010458)


Moving Obstacle Detection Based on Panoramic Vision for Intelligent Agricultural Vehicle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了滿足智能農(nóng)業(yè)車輛安全正常作業(yè),提出了基于全景視覺的運動障礙目標檢測。與傳統(tǒng)的單目和雙目視覺相比,全景視覺具有360°無盲區(qū)檢測的優(yōu)點。首先系統(tǒng)使用多線程技術采集多目視覺圖像,并用改進RANSAC-SIFT算法進行特征點提取與匹配,進而拼接全景視覺圖像;其次采用改進的CLG光流法處理全景圖像,檢測運動障礙目標。試驗表明:基于多線程技術和改進RANSAC-SIFT的全景拼接算法,與傳統(tǒng)SIFT算法相比,平均提高特征點匹配準確度25.6%,加快運算速度25.0%;采用改進CLG光流法進行運動障礙檢測,平均檢測時間為1.55 s,檢測成功率為95.0%。

    Abstract:

    In order to satisfy the safety and normal operation for intelligent agricultural vehicle, a method of detecting moving obstacles was proposed based on panoramic vision. Compared with the traditional monocular and binocular vision, panoramic vision possessed the advantages of 360° non-blind area detection. Firstly, multi-thread technology was used to acquire multi-vision images. The improved RANSAC-SIFT algorithm was used to extract and match feature points, and then stitch panoramic images. Secondly, improved CLG optical flow algorithm was used to detect moving obstacles based on panoramic images. Compared with the traditional SIFT algorithm , experiments showed that the accuracy of feature points matching was increased by 25.6% and the arithmetic speed was increased by 25.0%. Moving obstacle detection using improved CLG optical flow algorithm could take averagely 1.55 s to detect moving obstacles, and the accuracy was 95.0%.

    參考文獻
    相似文獻
    引證文獻
引用本文

李盛輝,周俊,姬長英,田光兆,顧寶興,王海青.基于全景視覺的智能農(nóng)業(yè)車輛運動障礙目標檢測[J].農(nóng)業(yè)機械學報,2013,44(12):239-244. Li Shenghui, Zhou Jun, Ji Changying, Tian Guangzhao, Gu Baoxing, Wang Haiqing. Moving Obstacle Detection Based on Panoramic Vision for Intelligent Agricultural Vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(12):239-244.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-12-05
  • 出版日期: