亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于光譜技術(shù)的牛肉多品質(zhì)參數(shù)快速檢測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(201003008)


Rapid Detection Model of Beef Quality Based on Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    研究了基于可見(jiàn)及近紅外反射光譜的生鮮牛肉多品質(zhì)參數(shù)檢測(cè)模型,優(yōu)化確定了建模所需的系統(tǒng)主要參數(shù)。利用可見(jiàn)及近紅外光譜檢測(cè)系統(tǒng)和手持式檢測(cè)探頭,進(jìn)行信號(hào)采集和光譜預(yù)處理,在保證一定檢測(cè)精度和穩(wěn)定性的條件下,設(shè)定400~700nm范圍內(nèi)掃描10次,700~2000nm范圍掃描30次,采集時(shí)間大約900ms。通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行不同預(yù)處理,并用樣品光譜杠桿值剔除掉異常樣品,建立PLSR校正模型,對(duì)比得到了預(yù)測(cè)效果最佳的校正模型,結(jié)果表明:經(jīng)過(guò)SNV變量標(biāo)準(zhǔn)化校正的模型效果最好,模型預(yù)測(cè)相關(guān)系數(shù)和均方根誤差分別為最大剪切力0.9068和7.1963N,肉色3參數(shù)L*為0.8854和2.3628,a*為0.8362和2.2969,以及蒸煮損失率為0.8453和2.1054%。對(duì)檢測(cè)系統(tǒng)進(jìn)行模型植入后加以驗(yàn)證,牛肉主要參數(shù)的驗(yàn)證結(jié)果相關(guān)系數(shù)均達(dá)到0.8以上,對(duì)牛肉老嫩等級(jí)的判別準(zhǔn)確率達(dá)到93.5%,基本實(shí)現(xiàn)牛肉多品質(zhì)參數(shù)的可見(jiàn)近紅外光譜快速檢測(cè)。

    Abstract:

    A beef quality on-line detection and classification models by Vis/NIR reflectance spectroscopy was established. The system parameters were optimized. Signal collection and spectroscopy preprocess were carried out by Vis/NIR reflectance spectroscopy and a handheld probe device. The scanning times were set on condition that system kept proper detection accuracy and stability, which was 10 times in wavelength range of 400~700nm and 30 times in wavelength range of 700~2000nm, and acquisition time of 900ms. Spectra leverage value of beef was calculated to eliminate abnormal samples, and then different data processing methods were used to establish beef quality PLSR models which finally showed the optimal result of beef quality prediction. The results indicated that the PLSR model with SNV processing had better performance, with the correlation coefficient of 0.9068 and root mean square error of 7.1963N for validation set of beef tenderness, 0.8854 and 2.3628 for L*, 0.8362 and 2.2969 for a*, 0.8453 and 2.1054% for validation set of beef cooking loss, respectively. The correlation coefficient was above 0.8 and the tenderness classification accuracy reached to 93.5%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

田瀟瑜,徐楊,彭彥昆,湯修映,郭輝,林琬.基于光譜技術(shù)的牛肉多品質(zhì)參數(shù)快速檢測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(Supp1):171-176. Tian Xiaoyu, Xu Yang, Peng Yankun, Tang Xiuying, Guo Hui, Lin Wan. Rapid Detection Model of Beef Quality Based on Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp1):171-176.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2013-10-22
  • 出版日期: