亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于WSN的溫室番茄光合速率預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31271619)和高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金資助項(xiàng)目(20110008130006、20100008110030)


Photosynthetic Rate Prediction of Tomato Plants Based on Wireless Sensor Network in Greenhouse
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高CO2氣肥的利用率,對(duì)日光溫室番茄開花期光合速率變化進(jìn)行了研究。采用無線傳感器網(wǎng)絡(luò)系統(tǒng)對(duì)溫室環(huán)境信息進(jìn)行實(shí)時(shí)監(jiān)測(cè);采用LI-6400XT型光合儀測(cè)定番茄植株葉片凈光合作用速率,并對(duì)葉片的環(huán)境狀況按照一定的規(guī)律進(jìn)行調(diào)控。將經(jīng)過主成分分析后的環(huán)境信息作為輸入?yún)?shù),將光合作用速率作為輸出參數(shù),利用BP神經(jīng)網(wǎng)絡(luò)建立了番茄開花期單葉凈光合作用速率的預(yù)測(cè)模型,并對(duì)預(yù)測(cè)模型進(jìn)行了性能評(píng)估。結(jié)果表明,所建立的光合作用速率模型預(yù)測(cè)值和實(shí)測(cè)值相關(guān)系數(shù)為0.99,均方根誤差為0.288,具有較好的預(yù)測(cè)效果。在一定環(huán)境條件下改變CO2濃度的輸入值,得到的光合作用速率預(yù)測(cè)曲線與實(shí)際曲線變化趨勢(shì)一致,該模型可以作為溫室番茄開花期CO2施肥量化調(diào)控的依據(jù).

    Abstract:

    In order to improve the utilization of CO2 fertilizer, the photosynthetic rate of tomato plants in the flowering stage was studied. A wireless sensor network system was used to real time monitor greenhouse environmental parameters. A LI-6400XT portable photosynthesis analyzer was used to measure the photosynthetic rate of tomato plants, and the environmental parameters of leaves were controlled according to the presetting rule. The photosynthetic rate prediction models of single leaves were established based on the back-propagation (BP) neural network. The environmental parameters were used as input neurons after processed by principal component analysis (PCA), and the photosynthetic rate was taken as the output neuron. The performance of the prediction model was evaluated. The prediction results of the models showed that the correlation coefficient between the simulated and observed data sets was 0.99, RMSE was 0.288. Furthermore, when different CO2 concentrations were selected as the input to predict the photosynthetic rate, the simulated and observed data showed the same trend. According to the above analysis, it was concluded that the model could be used as the basis of the quantitative regulation of CO2 fertilization to tomato plants in greenhouse.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王偉珍,張漫,蔣毅瓊,沙莎,李民贊.基于WSN的溫室番茄光合速率預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(Supp2):192-197. Wang Weizhen, Zhang Man, Jiang Yiqiong, Sha Sha, Li Minzan. Photosynthetic Rate Prediction of Tomato Plants Based on Wireless Sensor Network in Greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(Supp2):192-197.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-10-21
  • 出版日期:
文章二維碼