亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多特征融合的田間雜草分類識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中央高校基本科研業(yè)務費專項資金資助項目(DL12DB06)


Weed Recognition in Agricultural Field Using Multiple Feature Fusions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于模糊BP綜合神經網絡的田間雜草分類識別方法。對分類特征進行模糊化處理,充分考慮了雜草的分類特征本身存在的不確定性。使用遺傳算法對網絡結構進行優(yōu)化處理,提高了該綜合神經網絡的收斂性和穩(wěn)定性。并基于特征級數(shù)據融合方法進行雜草識別。對田間7種雜草進行識別的實驗結果表明,7種雜草的混合識別率達到94.2%;另外,對玉米及其伴生雜草進行分類測試,混合識別率達到96.7%,具有較好的識別精度。

    Abstract:

    A novel weed recognition scheme based on fuzzy BP overall neural network is proposed. First, the classification features are blurred to deal with the uncertainty of weed features. Second, the genetic algorithm is used to optimize the network structure so as to improve the network’s convergence and stability. Finally, a feature-level data fusion scheme is used. In weed species identification experiments, neural network consists of the 4 BP sub-networks on color feature, main texture feature, secondary texture feature and spectral feature. The results indicate that the overall recognition rate reaches to a good recognition accuracy of 94.2% for 7 weed species. Besides, experiments were put into effect on the corn and its accompanying weeds. The neural network consists of the 4 BP sub-networks on color feature, main texture feature, height feature and spectral feature. The recognition rate reaches to 96.7% with a better recognition accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙 鵬,韋興竹.基于多特征融合的田間雜草分類識別[J].農業(yè)機械學報,2014,45(3):275-281. Zhao Peng, Wei Xingzhu. Weed Recognition in Agricultural Field Using Multiple Feature Fusions[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(3):275-281.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-04-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-03-10
  • 出版日期: 2014-02-10