亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于PCA-MCAFA-LSSVM的養(yǎng)殖水質(zhì)pH值預(yù)測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

“十二五”國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2011BAD21B01)、廣東省科技計(jì)劃資助項(xiàng)目(2012A020200008、2011B040200034、2012B091100431)、廣東省自然科學(xué)基金資助項(xiàng)目(S2013010014629、S2012010008261)、廣東省省部產(chǎn)學(xué)研結(jié)合專項(xiàng)資金資助項(xiàng)目(2012B090500008)和寧波市農(nóng)業(yè)重點(diǎn)科技攻關(guān)資助項(xiàng)目(2011C11006)


Forecasting Model for pH Value of Aquaculture Water Quality Based on PCA-MCAFA-LSSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決水質(zhì)預(yù)測(cè)傳統(tǒng)方法精度低、魯棒性差等問題,提出了基于主成分分析(PCA)、改進(jìn)文化魚群算法(MCAFA)和最小二乘支持向量機(jī)(PCA-MCAFA-LSSVM)的養(yǎng)殖水質(zhì)pH值預(yù)測(cè)模型。該模型通過主成分分析提取養(yǎng)殖生態(tài)環(huán)境指標(biāo)的主成分,降低模型輸入向量維數(shù),利用改進(jìn)文化魚群算法對(duì)最小二乘支持向量機(jī)超參數(shù)進(jìn)行組合優(yōu)化,以自動(dòng)獲取最優(yōu)超參數(shù)建立非線性養(yǎng)殖水質(zhì)pH值預(yù)測(cè)模型。應(yīng)用該模型對(duì)宜興市河蟹養(yǎng)殖某池塘2011年9月1日~9月4日在線監(jiān)測(cè)的水質(zhì)數(shù)據(jù)進(jìn)行了預(yù)測(cè)分析,試驗(yàn)結(jié)果表明:該模型取得較好的預(yù)測(cè)效果,與分別用蟻群算法或遺傳算法優(yōu)化LSSVM的方法相比,PCA-MCAFA-LSSVM模型有93.05%的測(cè)試樣本絕對(duì)誤差小于8%,最大絕對(duì)誤差僅為11.61%,均方根誤差、平均相對(duì)誤差絕對(duì)值和運(yùn)行時(shí)間分別為0.0474、0.0041和4.367s,且均優(yōu)于其他預(yù)測(cè)方法。PCA-MCAFA-LSSVM算法不僅計(jì)算速度快、預(yù)測(cè)精度高,還能夠?yàn)楹有佛B(yǎng)殖水質(zhì)調(diào)控管理提供決策依據(jù)。

    Abstract:

    In order to solve the problem of low prediction accuracy and bad robustness of the traditional forecasting methods in water quality, this paper put forward the prediction model for pH value of aquaculture water quality based on the principal component analysis (PCA) and least squares support vector machine (LSSVM), which the hyper-parameters is optimized by modified cultural artificial fish-swarm algorithm(MCAFA). The dimension of aquiculture ecologic environmental data was reduced by principal component analysis; double evolutionary mechanism of cultural algorithm for reference was applied and LSSVM was taken as an artificial fish; belief space was used to guide the shoal evolution step size, global search direction and Cauchy mutation to improve the diversity of the artificial fish swarm; so the optimal hyper-parameters nonlinear pH value prediction model was automatically obtained. Based on the prediction model, the water quality on-line monitoring was predicted for a high-density aquaculture pond from September 1, 2011 to September 4, 2011 in Yixing city, Jiangsu province. Experimental results show that the PCA-MCAFA-LSSVM prediction model has good prediction effect than the ant colony algorithm LSSVM and genetic algorithm LSSVM. The absolute error of the 93.05% test samples is less than 8%, and the max absolute error is only 1161%; the root mean square error, average absolute relative error and the running time are 0.0474, 0.0041 and 4.367s respectively, which are better than those from the other models. It is obvious that PCA-MCAFA-LSSVM prediction model has low computational complexity and high forecast accuracy. It can provide the decision basis for the water quality controlling in the high density eriocheir sinensis culture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉雙印,徐龍琴,李振波,李道亮.基于PCA-MCAFA-LSSVM的養(yǎng)殖水質(zhì)pH值預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):239-246. Liu Shuangyin, Xu Longqin, Li Zhenbo, Li Daoliang. Forecasting Model for pH Value of Aquaculture Water Quality Based on PCA-MCAFA-LSSVM[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(5):239-246.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-06-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-05-10
  • 出版日期: 2014-05-10