亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于亮度校正和AdaBoost的蘋果缺陷在線識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(31301236)、國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2013AA100307)和2012年北京市農(nóng)林科學(xué)院博士后基金資助項目


On-line Identification of Defect on Apples Using Lightness Correction and AdaBoost Methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于亮度校正和AdaBoost的蘋果缺陷與果?!糃D*2〗花萼在線識別方法。以富士蘋果為研究對象,首先在線采集蘋果的RGB圖像和NIR圖像,并分割NIR圖像獲得蘋果二值掩模;其次利用亮度校正算法對R分量圖像進行亮度校正,并分割校正圖像獲得缺陷候選區(qū)(果梗、花萼和缺陷);然后以每個候選區(qū)域為掩模,隨機提取其內(nèi)部7個像素的信息分別代表所在候選區(qū)的特征,將7組特征送入AdaBoost分類器進行分類、投票,并以最終投票結(jié)果確定候選區(qū)的類別。實驗結(jié)果表明,該算法檢測速度為3個/s,滿足分選設(shè)備的實時性要求,且總體正確識別率達95.7%。

    Abstract:

    An algorithm was proposed to on-line identify the defects and stem-calyx on apples based on lightness correction method and AdaBoost classifier. The ‘Fuji’ apples were selected as the experiment object. First, the RGB images and NIR images of apples were acquired, and NIR images were binarized to obtain the mask images. Second, the R component images were corrected by using proposed lightness correction algorithm and the defect candidate regions were obtained by binarizing the corrected images with a single threshold. Third, every candidate region was treated as a mask, and the information of random seven pixels in the candidate region were selected as the characteristics of the selected candidate region. Finally, an AdaBoost classifier was used to classify these candidate regions by voting way, and the category of candidate region was determined according to the final voting results. For the investigated 140 samples, the results with a 95.7% overall detection rate under acquisition speed of three apples per second indicated that the proposed algorithm was effective.

    參考文獻
    相似文獻
    引證文獻
引用本文

張保華,黃文倩,李江波,趙春江,劉成良,黃丹楓.基于亮度校正和AdaBoost的蘋果缺陷在線識別[J].農(nóng)業(yè)機械學(xué)報,2014,45(6):221-226. Zhang Baohua, Huang Wenqian, Li Jiangbo, Zhao Chunjiang, Liu Chengliang, Huang Danfeng. On-line Identification of Defect on Apples Using Lightness Correction and AdaBoost Methods[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(6):221-226.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-05-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-06-10
  • 出版日期: 2014-06-10