亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

多鄰域鏈式結構的多目標粒子群優(yōu)化算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(51301070)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高多目標粒子群算法求解多目標問題的性能,改善算法的收斂性,提出一種多鄰域鏈式結構的多目標粒子群優(yōu)化算法。首先,以一種環(huán)形鏈式拓撲結構,將種群劃分為多個鄰域,每個鄰域之間相互交叉重疊,并針對不同位置的粒子,進行不同的速度和位置更新策略。其次,對所有粒子采用速度鉗制策略,并引入差分進化策略對粒子進行擾動,從而進一步提高算法的多樣性。通過14個無約束和3個有約束函數(shù)仿真實驗,表明該算法相對于NSGA II、SPEA2、MOEA/D DE、SMPSO和OMOPSO算法,獲得Pareto解集分布更加均勻,算法的收斂性和多樣性也更好。為了進一步驗證算法的可行性和有效性,將其應用于72桿桁架結構尺寸設計,并與其他優(yōu)化方法進行了比較,結果表明該算法獲得的Pareto前端更均勻,收斂性更好。

    Abstract:

    In order to enhance the performance and convergence of multi-objective particle swarm optimization (MOPSO) algorithm for multi-objective optimization, a multi-neighborhood cycle chain structure of multi-objective particle swarm optimization (MNCS-MOPSO) was proposed. Firstly, the population was divided into many neighborhoods. The mutual overlaps were existed between the adjacent neighborhood, and updating strategy was used for different velocity and position aimed at particles of different positions. In addition, velocity control strategy was adopted for all particles and differential evolution strategy was introduced to make disturbance. Comparing with NSGA-II, SPEA2, MOEA/D-DE, SMPSO and OMOPSO by testing 14 unconstraint and 3 constrain benchmark functions, simulation experiments showed that the proposed algorithm could obtain a more uniform distribution of Pareto solution set, and better convergence as well as diversity than those state-of-the-art multi-objective metaheuristics. In order to verify the performance of MNCS-MOPSO algorithm, classical 72 bar truss sizing optimization problems were used to demonstrate the feasibility and effectiveness of this algorithm, and the results were compared with other optimization methods. The results indicate that the MNCS-MOPSO provides better performance in the diversity, the uniformity and the convergence of the obtained solution than other methods.

    參考文獻
    相似文獻
    引證文獻
引用本文

王亞輝,唐明奇.多鄰域鏈式結構的多目標粒子群優(yōu)化算法[J].農(nóng)業(yè)機械學報,2015,46(1):365-372. Wang Yahui, Tang Mingqi.[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):365-372.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10