亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

黃綿土風(fēng)干過(guò)程中土壤含水率的光譜預(yù)測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2013AA102401—2)


Prediction of Soil Moisture Content in Air-drying Loess Using Spectral Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以2014年兩次在陜西省乾縣田間采集的129個(gè)黃綿土土壤樣本為研究對(duì)象,建立土壤含水率定量反演模型。在土壤風(fēng)干過(guò)程中測(cè)量光譜反射率及含水率,分析土壤含水率與光譜反射率之間的關(guān)系,并利用一元線性及指數(shù)回歸建立土壤含水率光譜預(yù)測(cè)模型。結(jié)果表明在400~1340、1460~1790、1960~2390nm波長(zhǎng)范圍內(nèi),與含水率相關(guān)性最大的反射率對(duì)應(yīng)的波長(zhǎng)分別為570、1460、1960nm;吸收深度最大的波長(zhǎng)位于490、1460、1960nm。土壤光譜特征指標(biāo)與含水率之間的線性相關(guān)關(guān)系優(yōu)于指數(shù)相關(guān)關(guān)系。以特征波長(zhǎng)1980nm(C1980)、1980nm的吸收深度(D1980)和1480nm的吸收深度(D1480)為自變量建立的線性模型為土壤含水率預(yù)測(cè)的最優(yōu)模型,校正和驗(yàn)證的決定系數(shù)R2大于0.92,相對(duì)預(yù)測(cè)偏差(RPD)大于2.5,均方根誤差(RMSE)小于2.5%。研究表明利用自然土樣,在風(fēng)干過(guò)程中進(jìn)行土壤含水率光譜快速預(yù)測(cè)是完全可行的,從而為遙感實(shí)時(shí)、快速監(jiān)測(cè)土壤水分含量及大面積土壤水分反演提供了參考。

    Abstract:

    129 loess soil samples taken from the field in Qian County of Shaanxi Province in 2014 were chosen as objects to build the inversion model between soil moisture content and spectra. The spectra and gravimetric moisture content of soil samples were measured during the process of soil air drying, and the relationship between spectra and soil moisture content was analyzed. The spectral predictive models of soil moisture content were established by using the linear regression and exponential analysis. Results showed that the biggest correlation coefficients and absorption depth bands located in 570, 1460, 1960nm and 490, 1460, 1960nm in the region of 400~1340, 1460~1790, 1960~2390nm, respectively. The linear relationship between spectral characteristic indexes and moisture content was better than the index relationship. The linear models were optimum models for predicting moisture content of loess by using characteristic band (C1980) and absorption depth (D1980 and D1480) as independent variables. The calibration and validation coefficient of determination R2 and residual prediction deviation (RPD) were higher than 0.92 and 2.5, respectively, and the root mean square error (RMSE) was less than 2.5%. These results showed that the moisture content of natural soil samples can be predicted rapidly by using spectral reflectance during the soil drying process. The study can provide a reference for real-time and rapid soil moisture content monitoring and soil moisture quantitative inversion in large area by using remote sensing technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉秀英,王力,宋榮杰,劉淼,常慶瑞.黃綿土風(fēng)干過(guò)程中土壤含水率的光譜預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):266-272. Liu Xiuying, Wang Li, Song Rongjie, Liu Miao, Chang Qingrui. Prediction of Soil Moisture Content in Air-drying Loess Using Spectral Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):266-272.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-01-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-04-10
  • 出版日期: 2015-04-10
文章二維碼