Abstract:An efficient condensation parallel computing method for finite element structural analysis was proposed based on the sparse storage techniques and direct sparse solvers. In the proposed method, the process of condensation was converted to the process of solving a series of linear equations, and then the linear equations were solved with a direct sparse solver. It can avoid the storage and computation of many zero elements within the bandwidth in the traditional parallel computing method with variable bandwidth format condensation. Therefore, the memory space can be greatly saved and the amount of computation can be effectively reduced. Finally, the experiment of the finite element numerical simulation for an engine crankshaft was used to validate the proposed method. Test results showed that, compared with the conventional parallel computing method with variable bandwidth format condensations, the proposed parallel computing approach with sparse storage format condensation could considerably save memory space and significantly improve computational efficiency. The larger the size of each subdomain, the effect of the proposed method on aspects of saving memory space and improving computational efficiency was more obvious. The proposed method can be applied to many industrial areas such as aerospace, automobile, energy, civil and architecture to significantly improve the efficiency of engineering design and analysis.