亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高斯過程建模的物聯(lián)網(wǎng)數(shù)據(jù)不確定性度量與預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

“十二五”國家科技支撐計劃資助項目(2014BAD08B01—2)、國家自然科學基金資助項目(51475278)、山東科技發(fā)展計劃資助項目(2013GNC11203、2014GNC112010)和山東農(nóng)業(yè)大學農(nóng)業(yè)大數(shù)據(jù)資助項目


Uncertainty Measurement and Prediction of IOT Data Based on Gaussian Process Modeling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    物聯(lián)網(wǎng)已經(jīng)成為農(nóng)業(yè)大數(shù)據(jù)最重要的數(shù)據(jù)源之一,自動觀測數(shù)據(jù)的質(zhì)量控制對農(nóng)業(yè)生產(chǎn)分析以及基礎科研數(shù)據(jù)應用非常重要。針對農(nóng)業(yè)物聯(lián)網(wǎng)觀測的一類非平穩(wěn)時間序列數(shù)據(jù)中的數(shù)據(jù)缺失、野值剔除、感知故障預警和長時間預測等問題,采用光滑弱假設高斯先驗,構(gòu)建了基于高斯過程的自回歸模型表征的動態(tài)系統(tǒng),并通過樣本集學習,形成能考慮噪聲干擾的傳感變化規(guī)律建模,并可提供預測誤差帶用于預測數(shù)據(jù)的不確定性度量。針對原始數(shù)據(jù)的缺失和野值問題,采用基于高斯過程的短期預測,可補齊缺失數(shù)據(jù),利用其不確定性度量可甄別數(shù)據(jù)野值,進行野值剔除與替換,并在此基礎上判斷感知故障;給出了基于輸入數(shù)據(jù)不確定性傳播的多步迭代預測方法,使長期預測仍可以跟蹤農(nóng)業(yè)數(shù)據(jù)的動態(tài)軌跡,并可為其預測值提供不確定性度量;將溫室采集的真實傳感數(shù)據(jù)用于分析試驗,驗證了高斯過程用于服務器端的農(nóng)業(yè)時間序列數(shù)據(jù)采集質(zhì)量控制的可行性。

    Abstract:

    The internet of things has become one of the most important data sources of agricultural big data, therefore automatic quality control of observational data is very important to agricultural production analysis and basic scientific data application. To solve the data missing, outliers excluding, perceived sensing failure and long-term prediction problems of the nonstationary time series data observed in agricultural systems, smooth Gaussian prior of weak assumptions on typical agricultural data was utilized; the dynamic system was built which was characterized by state space equations based on Gaussian process model; through the train set learning, the sensed variation models considered noise distribution were formed, and prediction error bar was provided with uncertainty measurement for the prediction data. For the problems of missing data and outliers excluding of raw data, short-term forecasts based on Gaussian process were adopted to fill with missing data, and its uncertainty measurement was used to detect outliers. Therefore, the outliers were removed and replaced with prediction value, and further sensing failure could be determined on the basis of accumulated outliers in certain time slice. The multi-step iterative method based on the uncertainty spread of input data was given for long-term prediction to track the dynamic trajectory of agricultural sensing data, and an uncertainty measurement could be provided for its predictive value. The data analysis of real sensed collection greenhouse microclimate verifies the feasibility of quality control of agricultural time series data based on Gaussian process in server-side.

    參考文獻
    相似文獻
    引證文獻
引用本文

苑進,胡敏,Kesheng Wang,劉雪美,侯加林,米慶華.基于高斯過程建模的物聯(lián)網(wǎng)數(shù)據(jù)不確定性度量與預測[J].農(nóng)業(yè)機械學報,2015,46(5):265-272. Yuan Jin, Hu Min, Kesheng Wang, Liu Xuemei, Hou Jialin, Mi Qinghua. Uncertainty Measurement and Prediction of IOT Data Based on Gaussian Process Modeling[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(5):265-272.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-09-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-05-10
  • 出版日期:
文章二維碼