亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于勢場蟻群算法的移動(dòng)機(jī)器人全局路徑規(guī)劃方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2007AA04Z232)、國家自然科學(xué)基金資助項(xiàng)目(61075027、91120011)和河北省自然科學(xué)基金資助項(xiàng)目(F2010001106、F2013210094)


Robot Global Path Planning Based on Ant Colony Optimization with Artificial Potential Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對移動(dòng)機(jī)器人路徑規(guī)劃蟻群算法收斂速度慢和人工勢場法易陷入局部最優(yōu)的問題,提出一種以柵格地圖為環(huán)境模型,在蟻群算法搜索過程中加入針對具體問題的人工勢場局部搜索尋優(yōu)算法,將人工勢場法中力因素轉(zhuǎn)換為局部擴(kuò)散信息素,使蟻群傾向于具有高適應(yīng)值的子空間搜索,減少了蟻群算法在盲目搜索路徑過程中產(chǎn)生的局部交叉路徑及螞蟻“迷失”數(shù)量,提高了蟻群對障礙物的預(yù)避障能力。對不同參數(shù)組合下2種算法及其它改進(jìn)算法仿真結(jié)果做了比較,驗(yàn)證了基于勢場蟻群算法的全局路徑規(guī)劃能夠加快尋優(yōu)過程且具有較強(qiáng)的搜索能力,收斂速度提高近1倍。

    Abstract:

    To solve the problems of the slow convergence speed in ant colony algorithm and the local optimum in artificial potential field method, an improved ant colony optimization algorithm was proposed for path planning of mobile robot in the environment expressed by the grid method. The local force factor of artificial potential field was converted into spreading pheromones in the ant searching process, so the ant colony algorithm focused on subspace search with high fitness. It reduced the partial cross paths and the number of lost ants in the process of general ant colony algorithm in blind search. It also enhanced the ability of robot to avoid obstacle in advance. Two algorithms simulation results under different parameter combinations showed that the improved ant colony algorithm not only solved the local optimum problem of artificial potential method, but also avoided the blind search of general ant colony algorithm. In addition, the simulation results were compared with other improved algorithms. The comparisons verified the efficiency of the proposed algorithm which shows better search performance and stronger searching ability than the traditional ant colony algorithms and other improved algorithms. The convergence speed of the proposed algorithm was nearly doubled.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉建華,楊建國,劉華平,耿 鵬,高 蒙.基于勢場蟻群算法的移動(dòng)機(jī)器人全局路徑規(guī)劃方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):18-27. Liu Jianhua, Yang Jianguo, Liu Huaping, Geng Peng, Gao Meng. Robot Global Path Planning Based on Ant Colony Optimization with Artificial Potential Field[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(9):18-27.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-01-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-09-10
  • 出版日期: