亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于對數(shù)相似度約束Otsu的自然場景病害果實圖像分割
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(61261024)、海南省自然科學基金資助項目(614221、20156228、20156245)、海南省教育廳基金資助項目(HNKY2014-18)和海南省社會發(fā)展科技專項資助項目(2015SF33)


Image Segmentation of Fruits with Diseases in Natural Scenes Based on Logarithmic Similarity Constraint Otsu
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對自然場景下,由于復雜背景以及多變環(huán)境,水果病害果實圖像分割難的問題,提出了一種基于對數(shù)相似度約束Otsu和水平集活動輪廓的近橢圓形病害果實圖像分割方法??紤]背景的復雜多變,提出對數(shù)相似度約束Otsu分割來區(qū)分病害果實與背景;由于水平集活動輪廓模型的局部最優(yōu)性,提出采用自適應膨脹系數(shù)的改進距離規(guī)則水平集活動輪廓模型來精確演化輪廓。先對病害果實區(qū)域樣本的顏色進行混合高斯建模,獲得整個病害果實圖像與樣本模型的對數(shù)相似度;對對數(shù)相似度進行約束Otsu閾值分割以及形態(tài)學濾波;采用最小二乘法對濾波后的曲線輪廓進行橢圓擬合,對擬合后的橢圓采用自適應膨脹系數(shù)的距離規(guī)則水平集活動輪廓演化,得到病害果實完整輪廓。對18個不同場景的病害果實進行分割,平均誤判率和漏判率分別為1.77%和1.6%,實驗結果表明,該方法可以從復雜自然場景圖像中分割出病害果實。

    Abstract:

    Due to complex and changeful environment, the image segmentation of fruits with diseases in natural scenes is a difficult problem. A logarithmic similarity constraint Otsu and level set active contour (LSAC) based image segmentation approach of fruits with diseases was proposed in this paper. Considering the complexity and changeableness in natural scenes, the constraint Otsu method for segmenting logarithmic similarity image between diseased fruits and samples was introduced to distinguish diseased fruits and background; because of the local optimality of LSAC, improved distance regularization level set evolution (DRLSE) with adaptive expansion coefficient was used to lead contour to actual position. Firstly, the sample color of fruits with diseases, which included not only health area but also diseases area, was modeled using Gaussian mixture model (GMM), and then the logarithmic similarity between the image of fruits with diseases and model was obtained. Secondly, logarithmic similarity image was segmented with constraint Otsu and then morphology operator was used to filter out noise and interference. Thirdly, leastsquares ellipse fitting method was employed to further removal interference and get initial contour for LSAC. Finally, the contour of fruits with diseases was evolved to the actual position taking use of improved DRLSE with adaptive expansion coefficient. The experimental results show that the actual contour of fruits with disease in complex natural scenes can be obtained and the proposed method can provide the basis for the subsequent diseases density estimation and prevention of fruit diseases.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙瑤池,胡祝華.基于對數(shù)相似度約束Otsu的自然場景病害果實圖像分割[J].農(nóng)業(yè)機械學報,2015,46(11):9-15. Zhao Yaochi, Hu Zhuhua. Image Segmentation of Fruits with Diseases in Natural Scenes Based on Logarithmic Similarity Constraint Otsu[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(11):9-15.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-07-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-11-10
  • 出版日期: 2015-11-10