亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

近紅外多組分分析中異常樣本識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

新疆生產建設兵團科技支疆計劃資助項目(2014AB037)


Outlier Samples Detection Method for NIR Multicomponent Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    近紅外光譜分析中,異常樣本的存在嚴重影響定標模型的預測性能和適配性?;?X / Y 聯(lián)合的ODXY異常樣本識別和剔除方法,提出并證明了一種專用于多組分分析的MODXY異常樣本識別方法。實驗采用80組玉米近紅外光譜數(shù)據(jù),利用不同異常樣本識別方法剔除異常樣本后建立玉米含水率、含油率、蛋白質含量和淀粉含量4種組分的偏最小二乘預測模型,采用預測均方差和決定系數(shù)作為評價指標比較所建模型的性能,檢驗MODXY方法在多組分分析中的異常樣本識別能力。實驗結果表明:在近紅外多組分分析中,MODXY方法在大多數(shù)情況下具有更好的異常樣本識別能力;MODXY方法和ODXY方法均有一定的適用范圍,它們更適合于相應組分化學值的相對標準偏差較大的情況。

    Abstract:

    Abstract: Near infrared spectroscopy is currently a highly versatile tool used in diverse fields. However, outlier samples strongly affect the performance of the prediction model in near infrared spectroscopy analysis. Therefore, detecting and eliminating the outlier samples is a major and important procedure in near infrared spectroscopy analysis. Using the outlier samples detection based on joint X-Y distances (ODXY) method, a special outlier samples detection method for multicomponent analysis was proposed and proved, termed as MODXY method. Experimental data was derived from the near infrared spectra of 80 corns. Based on these, the PLS models of moisture content, oil content, protein content and starch content were constructed by eliminating outlier samples using different outlier detection methods. The obtained models were compared in terms of performance by the predictive root mean square error (RMSEP) and the coefficient of determination ( R 2). The results showed that in most cases the MODXY method had better outlier sample recognition capability in NIR multicomponent analysis compared with other methods. Both ODXY method and MODXY method had their own suitable range, and they were more effective when the relative standard deviation of components was large enough.

    參考文獻
    相似文獻
    引證文獻
引用本文

尹寶全,史銀雪,孫瑞志,王文狄.近紅外多組分分析中異常樣本識別方法[J].農業(yè)機械學報,2015,46(S1):122-127. Yin Baoquan, Shi Yinxue, Sun Ruizhi, Wang Wendi. Outlier Samples Detection Method for NIR Multicomponent Analysis[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):122-127.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼