亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于圖像顏色特征的密植冬小麥覆蓋指數(shù)反演
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2013AA102303)、公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(201303109)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2015XD001)


Retrieving Vegetation Coverage Index of Winter Wheat Based on Image Colour Characteristic
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了快速獲取大田冬小麥作物生長(zhǎng)信息,對(duì)田間植被覆蓋度(VCI)進(jìn)行檢測(cè)。采用開(kāi)發(fā)的多光譜圖像采集系統(tǒng),在拔節(jié)期-揚(yáng)花期獲取冬小麥冠層可見(jiàn)光( B、G、R ,400~700 nm)和近紅外(NIR,760~1 000 nm)圖像。圖像經(jīng)自適應(yīng)平滑濾波處理后,針對(duì)RGB圖像,采用HSI色彩空間模型,設(shè)定 H 分量閾值[π/4,6π/5]進(jìn)行分割,對(duì)NIR圖像采用自動(dòng)閾值分割法分割,進(jìn)而提出了基于“ H +NIR”組合的冬小麥冠層多光譜圖像分割方法,并計(jì)算VCI值。對(duì)未經(jīng)分割的原始圖像提取了9個(gè)圖像檢測(cè)參數(shù),包括各通道圖像灰度均值( A R、 A G、 A B、 A NIR )、歸一化植被指數(shù)(NDVI)、歸一化差異綠度指數(shù)(NDGI)、比值植被指數(shù)(RVI)、差值植被指數(shù)(DVI)和冠層 H 分量均值 A H。圖像檢測(cè)參數(shù)與VCI相關(guān)性分析結(jié)果表明,各植被指數(shù)與VCI的相關(guān)系數(shù)絕對(duì)值均大于0.90。應(yīng)用NDVI、NDGI、RVI和DVI建立了多元線性回歸模型,其 R 2 c =0.948, R 2 v =0.884,可以用于快速反演VCI,為田間作物生長(zhǎng)評(píng)價(jià)和管理提供支持。

    Abstract:

    In order to rapidly acquire winter wheat growing information in the field, the retrieval method of vegetation coverage index(VCI) was researched based on multi-spectral imaging technique and imaging processing technology. Firstly, a 2-CCD multi-spectral image monitoring system was used to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (RGB) and near-infrared (NIR) band. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the canopy image of winter wheat was segmented. HSI color model and automated threshold method were used to segment the RGB and NIR image respectively. The hue threshold was [ π/4 , 6π/5]. The segmented results of RGB and NIR were combined to improve the segmentation accuracy and the VCI was calculated. Thirdly, the image parameters were abstracted based on the original visible and NIR images including the average gray value of each channel( A R, A G, A B ) and near-infrared ( A NIR ),the vegetation indices (NDVI, NDGI, RVI, DVI) which were widely used in remote sensing, and the H average value of canopy. The correlation analysis results showed that the correlation coefficients between vegetation indices and VCI were above 0.90. As a result, the retrieving multiple linear regressions (MLR) model was built by using NDVI, NDGI, RVI and DVI with R 2 c =0.948 and R 2 v = 0.884. It was feasible to diagnose vegetation coverage in the field and indicate the growth status.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫紅,文瑤,趙毅,李民贊,陳軍,楊瑋.基于圖像顏色特征的密植冬小麥覆蓋指數(shù)反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(S1):240-245. Sun Hong, Wen Yao, Zhao Yi, Li Minzan, Chen Jun, Yang Wei. Retrieving Vegetation Coverage Index of Winter Wheat Based on Image Colour Characteristic[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):240-245.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼