亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于GF-1 WFV影像的作物面積提取方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(41371326)和國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2013AA10230103)


Extraction Method of Crop Planted Area Based on GF-1 WFV Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    黑龍江省是我國糧食生產(chǎn)大省,及時有效地獲取黑龍江省的農(nóng)作物種植面積對后續(xù)研究的開展具有重要意義。以黑龍江省五九七農(nóng)場為例,利用2014年8月30日GF-1衛(wèi)星16 m空間分辨率影像,通過計算不同特征波段,構(gòu)建了多特征水稻、玉米種植區(qū)識別方法。首先計算影像歸一化差分植被指數(shù)(NDVI),并將原影像進(jìn)行主成分變換,以此為基礎(chǔ)建立包含多特征的數(shù)據(jù)集。然后利用不同地物類型之間在各特征波段的差異,基于CART算法構(gòu)建決策樹,分別提取研究區(qū)內(nèi)的水稻和玉米。精度評價結(jié)果表明,分類的總體精度達(dá)到96.15%,Kappa系數(shù)為0.94。水稻的制圖精度為98.41%,用戶精度為97.64%;玉米的制圖精度為95.38%,用戶精度為97.89%。其中總體精度和Kappa系數(shù)較最大似然法分類結(jié)果分別提高了5.28%和0.08。所提研究方法可為其他地區(qū)農(nóng)作物高分?jǐn)?shù)據(jù)作物類型制圖提供借鑒。

    Abstract:

    Obtaining planted area of crop has important significance for guaranteeing nation grain safety. The Farm NO.597, located in Baoqing County, Shuangyashan City, Heilongjiang Province was selected as an example to extract rice and maize planted area by taking WFV (Wide field view) sensor carried on GF-1 satellite with the spatial resolution of 16 m as data source, using the image produced on October 30, 2014, and calculating different characteristic bands. Firstly, the multi-characteristic data set was established based on the NDVI (Normalized difference vegetation index) calculated from the source image and the first three principal components analyzed by PCA (Principal component transform). Then, using the difference between different surface features in each characteristic band, the decision tree was built based on CART (Classification and regression trees) to classify rice and maize. The results showed that the overall classification accuracy was 96.15% and the Kappa coefficient was 0.94. Producer accuracy of rice was 98.41% and user accuracy was 97.64%. Producer accuracy of maize was 95.38% and user accuracy was 97.89%. This method provides the reference value for crop type mapping using GF-1 data in other agricultural areas.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃健熙,賈世靈,武洪峰,蘇偉.基于GF-1 WFV影像的作物面積提取方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2015,46(S1):253-259. Huang Jianxi, Jia Shiling, Wu Hongfeng, Su Wei. Extraction Method of Crop Planted Area Based on GF-1 WFV Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(S1):253-259.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-12-30
  • 出版日期: 2015-12-31
文章二維碼