亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜圖像的紅豆品種GA—PNN神經(jīng)網(wǎng)絡(luò)鑒別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31471413、31401286)、江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目PAPD(蘇政辦發(fā)(2011)6號(hào))、江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(NZ201306)、江蘇省六大人才高峰項(xiàng)目(ZBZZ—019)、中國(guó)博士后科學(xué)基金項(xiàng)目(2014M561594)和江蘇省自然科學(xué)基金項(xiàng)目(BK20141165、20140550)


Identification of Red Bean Variety with Probabilistic GA—PNN Based on Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出一種基于高光譜圖像技術(shù)的紅豆品種鑒別方法。利用高光譜成像系統(tǒng)采集江蘇、安徽、山東的3個(gè)品種共162個(gè)紅豆樣本高光譜圖像數(shù)據(jù),通過(guò)ENVI軟件提取出紅豆中感興趣區(qū)域的平均光譜作為該樣本原始光譜信息,利用SG多項(xiàng)式平滑對(duì)原始光譜數(shù)據(jù)進(jìn)行去噪處理,由于高光譜數(shù)據(jù)信息量大,冗余性強(qiáng),故需對(duì)高光譜數(shù)據(jù)進(jìn)行降維,采用了連續(xù)投影算法進(jìn)行特征波長(zhǎng)選擇,根據(jù)交叉驗(yàn)證均方根誤差確定最佳特征光譜的個(gè)數(shù)為9,采用主成分分析法和獨(dú)立分量分析算法進(jìn)行特征波長(zhǎng)提取,經(jīng)過(guò)PCA處理,根據(jù)方差累計(jì)貢獻(xiàn)率大于85%的標(biāo)準(zhǔn)選出7個(gè)特征波長(zhǎng),ICA分別提取了7、10、17個(gè)特征波長(zhǎng),通過(guò)測(cè)試集驗(yàn)證,選出17個(gè)最佳特征波長(zhǎng)。最后分別將優(yōu)選出的特征波長(zhǎng)和提取出的最優(yōu)主成分作為模型的輸入。建立概率神經(jīng)網(wǎng)絡(luò)(PNN)模型測(cè)試后發(fā)現(xiàn)結(jié)果沒(méi)有達(dá)到預(yù)期精度,引入遺傳算法(GA)優(yōu)化的PNN神經(jīng)網(wǎng)絡(luò)的閾值,并對(duì)隱含層節(jié)點(diǎn)進(jìn)行最優(yōu)選擇。通過(guò)測(cè)試試驗(yàn),所有的模型識(shí)別正確率均高于85%,其中SPA—GA—PNN模型的效果最佳,識(shí)別正確率達(dá)到了97.5%。

    Abstract:

    A method to identify different varieties of red bean based on hyperspectral imaging technology was proposed. The hyperspectral imaging system with spectrum range of 390~1050nm was used to capture the hyperspectral images of 162 red bean samples, which were collected from three different areas (Anhui, Shandong and Jiangsu Provinces). ENVI software was adopted to determine the region of interest (ROI) in the hyperspectral image and extract the hyperspectral data by averaging the reflectance from all the pixels in the ROI images, and the original spectra were preprocessed by Savitzky—Golay (SG) smoothing. As there was a large number of noise and redundant information in the raw hyperspectral images and hyperspectral data, some data processing methods should be used to remove the noise, accelerate the processing efficiency and improve the performance of the models. The method of feature extraction was SPA, the number of characteristic wavelengths was determined as 9 by using the leave-one-out cross-validation. The methods of feature selection were PCA and ICA. According to the standard of the cumulative contribution rate of variance was more than 85%, seven characteristic wavelengths were selected. Through test and verification, 17 was the best number of characteristic wavelengths of ICA. Finally, the selected optimal characteristic wavelengths and principal components were used as the inputs of the model. However, the results did not meet the expected accuracy, the threshold of PNN neural network and hidden layer nodes were optimized by GA. The recognition rate of the model was higher than 85%, and the recognition rate of the highest SPA—GA—PNN model reached 97.5%. The results demonstrated that it was feasible to use hyperspectral imaging technology for the identification of red bean variety. PNN neural network model can identify red bean variety fast, effectively and nondestructively and provide theoretical basis and technical means for the realization of red bean variety identification based on hyperspectral image technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫俊,路心資,張曉東,朱文靜,武小紅,楊寧.基于高光譜圖像的紅豆品種GA—PNN神經(jīng)網(wǎng)絡(luò)鑒別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(6):215-221. Sun Jun, Lu Xinzi, Zhang Xiaodong, Zhu Wenjing, Wu Xiaohong, Yang Ning. Identification of Red Bean Variety with Probabilistic GA—PNN Based on Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(6):215-221.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-12-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-06-10
  • 出版日期: 2016-06-10