亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

番茄采摘機(jī)器人非顏色編碼化目標(biāo)識別算法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術(shù)研究發(fā)展計劃(863計劃)項目(2013AA102307)和“十二五”國家科技支撐計劃項目(2014BAD08B01)


Object Recognition Algorithm of Tomato Harvesting Robot Using Non-color Coding Approach
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)番茄采摘機(jī)器人在非結(jié)構(gòu)化環(huán)境下對目標(biāo)番茄的準(zhǔn)確識別,提出了一種基于非顏色編碼的番茄識別算法。通過Haar-like特征及其編碼的方法,結(jié)合AdaBoost深度學(xué)習(xí)算法可以獲得用于識別成熟番茄的分類器;并研究了Haar-like特征類型和AdaBoost學(xué)習(xí)訓(xùn)練次數(shù)對分類器性能的影響。所得強(qiáng)分類器對測試集中的番茄進(jìn)行在線識別試驗。試驗結(jié)果表明,測試集中93.3%的成熟番茄能夠被正確識別;同時該分類器還對光照變化、果實粘連以及枝葉遮擋等干擾具有較強(qiáng)的自適應(yīng)性和魯棒性,滿足采摘機(jī)器人對目標(biāo)識別的技術(shù)要求。

    Abstract:

    In order to detect the ripe tomato in unstructured environment for robotic harvesting, a tomato recognition algorithm using noncolor coding approach was developed. The proposed algorithm was consist of offline training and online recognition. In the process of offline training, a strong classifier was obtained using AdaBoost algorithm with Haar-like features. The Haar-like feature is a kind of noncolor coding feature which can be extracted by integral figure calculation. In the online recognition process, the tomato object was detected by using the strong classifier which was obtained in the offline training process. Two couples of comparative tests were conducted to study the influence of the types of Haar-like features and training times on the performance of the proposed algorithm. The results showed that the Cstyle Haar-like features and 20000 training times were the optimal parameters for the size of training set. The results of online recognition tests indicated that about 93.3% ripe tomatoes existing in the testing samples set were successfully detected. The proposed tomato recognition approach was also successfully applied in the unstructured environment with various disturbances such as occluded, overlapping, and varying illumination, which indicated that the proposed tomato recognition algorithm was selfadaptive and robust. It was available to be applied in the vision recognition system for a harvesting robot.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙源深,貢 亮,周 斌,黃亦翔,牛慶良,劉成良.番茄采摘機(jī)器人非顏色編碼化目標(biāo)識別算法研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2016,47(7):1-7. Zhao Yuanshen, Gong Liang, Zhou Bin, Huang Yixiang, Niu Qingliang, Liu Chengliang. Object Recognition Algorithm of Tomato Harvesting Robot Using Non-color Coding Approach[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):1-7.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-01-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10