亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于機(jī)器視覺(jué)的采后荔枝表皮微損傷實(shí)時(shí)檢測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:


Real-time Detection of Micro-damage on Peel of Postharvest Litchi Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    利用機(jī)器視覺(jué)技術(shù)進(jìn)行采后荔枝的品質(zhì)檢測(cè)與分級(jí)有重要意義。首先結(jié)合攝像機(jī)與熒光光譜儀進(jìn)行了荔枝圖像的光譜分析,熒光作為激發(fā)光進(jìn)行荔枝果皮的發(fā)射光譜特性分析,確定了不同熒光照射荔枝果實(shí)表皮的視覺(jué)檢測(cè)方法的可行性;然后設(shè)計(jì)了具有不同顏色光照轉(zhuǎn)換控制功能的機(jī)器視覺(jué)系統(tǒng),選定了紅色、藍(lán)色和綠色熒光燈,對(duì)正常和微損傷兩種品質(zhì)狀態(tài)的荔枝果實(shí)熒光圖像進(jìn)行灰度直方圖統(tǒng)計(jì)分析,確定了利用藍(lán)色熒光作為照射光源以及HSV顏色空間的V分量進(jìn)行微損傷荔枝果實(shí)圖像識(shí)別的方法,利用探索性分析法對(duì)荔枝果實(shí)視覺(jué)檢測(cè)試驗(yàn)結(jié)果進(jìn)行統(tǒng)計(jì)與分析,確定了正常與微損傷荔枝果實(shí)圖像分割的灰度圖閾值范圍,結(jié)合優(yōu)化的圓擬合算法,實(shí)現(xiàn)了荔枝果實(shí)視覺(jué)智能分級(jí)系統(tǒng)的設(shè)計(jì)。試驗(yàn)結(jié)果表明:該研究方法對(duì)正常荔枝和表皮微損傷荔枝的識(shí)別正確率為92%,為荔枝產(chǎn)后智能化檢測(cè)分級(jí)提供了技術(shù)支持。

    Abstract:

    It has great significance that using the machine vision technology to detect the quality of postharvest litchi fruit. Firstly, the camera and fluorescence spectrometer were used for the spectrum analysis of litchi image, the emission spectrum characteristics were analyzed under the fluorescence as excitation light, which determines the feasibility of the visual detection method of litchi fruits with different fluorescence exposures. Then, the machine vision system of different light switch controls were designed, the red, blue and green fluorescent lamp were selected, and the singlechip microcomputer system was used to control the switch of the LED lamps, of which the interval is 1s; meanwhile, the image acquisition system triggered the camera to take images, the frequency of the light switch in keeping with the number of taking image times. The grey level histogram of the fluorescence image for normal and microdamaged state of two kinds of litchi fruit was statistic analyzed, the image recognition method for the micro damaged litchi fruit was determined by using blue fluorescent as light source and the V component of HSV color space. Then the exploratory analysis was used for the statistics and analysis on test results of litchi fruit visual inspection. The grayscale image segmentation threshold of the normal and microdamaged litchi fruit was determined. The grayscale image threshold segmentation, the morphology processing and the optimized Hough circle fitting method were used to the litchi images, which realized the design of the machine vision intelligent classification system for litchi fruit. The test results show that: the recognition accuracy of the normal and microdamaged litchi fruit is 92%, which can provide technical support to intelligent detection technology for postharvest fruit and vegetable.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫寶霞,湯林越,何志良,鄒湘軍,熊俊濤.基于機(jī)器視覺(jué)的采后荔枝表皮微損傷實(shí)時(shí)檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):35-41. Sun Baoxia, Tang Linyue, He Zhiliang, Zou Xiangjun, Xiong Juntao. Real-time Detection of Micro-damage on Peel of Postharvest Litchi Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):35-41.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-05-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10
文章二維碼