亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

視覺導(dǎo)引AGV魯棒特征識(shí)別與精確路徑跟蹤研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61105114)、江蘇省科技支撐計(jì)劃項(xiàng)目(BE2014137)、中國(guó)博士后科學(xué)基金項(xiàng)目(2015M580421)、江蘇省博士后科研計(jì)劃項(xiàng)目(1501103C)、中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(NS2016050)和南京航空航天大學(xué)研究生創(chuàng)新基地(實(shí)驗(yàn)室)開放基金項(xiàng)目(KFJJ20150519)


Robust Feature Recognition and Precise Path Tracking for Vision-guided AGV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)AGV多分支路徑與工位點(diǎn)標(biāo)識(shí)的可靠識(shí)別以及導(dǎo)引路徑的精確跟蹤問題,提出了一種基于雙視野窗口的魯棒特征識(shí)別與精確路徑跟蹤方法。采用整幅視野范圍作為模式識(shí)別窗口,在該窗口采用基于核主成分分析(KPCA)和BP神經(jīng)網(wǎng)絡(luò)的識(shí)別方法,將路徑特征通過(guò)核函數(shù)映射到高維空間進(jìn)行PCA降維,再利用BP神經(jīng)網(wǎng)絡(luò)識(shí)別降維后的樣本矩陣。同時(shí)提出一種導(dǎo)引掃描窗口設(shè)置方法,該窗口范圍取決于攝像機(jī)豎直視角以及攝像機(jī)安裝傾斜角,在導(dǎo)引掃描窗口內(nèi)將導(dǎo)引路徑簡(jiǎn)化為直線模型并用最小二乘法擬合,針對(duì)擬合直線計(jì)算導(dǎo)引所需的路徑偏差。實(shí)驗(yàn)結(jié)果表明,KPCA-BP方法顯著提高了路徑特征識(shí)別的實(shí)時(shí)性和魯棒性,6類路徑特征的平均特征識(shí)別正確率為99.5%;導(dǎo)引掃描窗口有效減小了導(dǎo)引路徑直線擬合的計(jì)算誤差,直線路徑跟蹤誤差小于3mm,曲線路徑跟蹤誤差小于30mm。

    Abstract:

    An approach of robust feature recognition and precise path tracking based on two visual field windows was proposed for an AGV to identify multibranch paths and station point reliably, and to follow guide paths accurately. The whole visual field was used as a pattern recognition window, in which a recognition method based on kernel principal component analysis (KPCA) and BP neural network was developed. Path features were mapped to a highdimensional space by using the kernel function and then their dimensionalities were reduced by using PCA. After dimensionality reduction, the sample matrices were recognized by utilizing a BP neural network. Besides, a scaling window method based on a vertical view angle and a tilt installation angle of a camera was suggested for a guidance scanning window. In this window, guide paths were simplified according to a linear model and fitted by using the least square method. Path deviations with respect to the fitted straight line were estimated for AGV guidance. Experimental results show that the KPCA-BP approach improves the realtime performance and robustness of path feature recognition significantly, the average correct rate of which is 99.5% for six types of landmark feature, and that the guidance scanning window decreases the computing error resulted from linear fitting of guide paths effectively, the tracking error of which is no more than 3mm for linear path and 30mm for curvilinear path.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

武 星,沈偉良,樓佩煌,王龍軍.視覺導(dǎo)引AGV魯棒特征識(shí)別與精確路徑跟蹤研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):48-56. Wu Xing, Shen Weiliang, Lou Peihuang, Wang Longjun. Robust Feature Recognition and Precise Path Tracking for Vision-guided AGV[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):48-56.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-01-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10