亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)特征的鑄件缺陷射線圖像動態(tài)檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

重慶市基礎(chǔ)與前沿研究計(jì)劃基金項(xiàng)目(cstc2013jcyjA70009)和國家自然科學(xué)基金青年基金項(xiàng)目(51075419)


Dynamic Detection of Casting Defects Radiographic Image Based on Deep Learning Feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對X射線檢測中鑄件微弱缺陷誤檢率和漏檢率高的問題,提出一種基于選擇性注意機(jī)制和深度學(xué)習(xí)特征匹配的缺陷動態(tài)跟蹤檢測方法?;谏渚€圖像序列,采取幀內(nèi)注意區(qū)域檢測消除漏檢、幀間深度學(xué)習(xí)特征匹配跟蹤排除誤檢的策略。在幀內(nèi)檢測階段,提出通過中央-周邊梯度搜索方法模擬生物視覺的中央-周邊差運(yùn)算,根據(jù)梯度閾值直接檢測各可疑缺陷區(qū)域,無需分割出缺陷本身。在幀間跟蹤階段,借鑒人類大腦視覺感知系統(tǒng)的深度學(xué)習(xí)層次結(jié)構(gòu),建立基于卷積神經(jīng)的深度學(xué)習(xí)網(wǎng)絡(luò),可疑缺陷區(qū)域灰度信號直接作為輸入,自動抽取表征可疑缺陷區(qū)域的本質(zhì)特征信息,組成深度學(xué)習(xí)特征矢量。定義基于歐氏距離的特征矢量相似度,通過連續(xù)圖像中可疑缺陷區(qū)域的相似度匹配實(shí)現(xiàn)缺陷跟蹤,以消除噪聲等偽缺陷。實(shí)驗(yàn)結(jié)果表明,基于深度學(xué)習(xí)特征匹配方法的鑄件缺陷圖像動態(tài)檢測,誤檢率和漏檢率均低于3%,缺陷檢測準(zhǔn)確率超過97%,證明了所提方法的有效性。

    Abstract:

    In order to reduce the misdetection ratio and false detection ratio of small casting defects in X radiographic testing,a dynamic defects tracking and detection method based on selective attention mechanism and deep learning feature matching was proposed. The misdetection of image sequences was eliminated with attention region detection of individual images and the false detection was also eliminated with feature matching among the image sequence. In the phase of individual images detection, a search method based on central-peripheral gradient was proposed to simulate the central-peripheral difference operation of biological vision. And the gradient threshold was defined. Then by comparing each regional gradient with threshold, the suspicious defect area was directly detected according to the gradient threshold. The defects did not need to be segmented from the suspicious image area. So the method avoided the great influence of the defects segmentation accuracy rate to defects tracking. In the phase of tracking among the image sequence,referencing to the deep learning hierarchy of human visual perception system, a deep learning network based on convolution neural was established. The gray level signal of the suspicious defect area was directly used as input. The network could automatically extract the essential feature which made up the deep learning feature vector. The similarity of feature vector was defined based on Euclidean distance. Defect tracking was achieved by similarity matching of suspicious defect regions in continuous frames. Then the noise and other false defects were eliminated. The experiments show that the false detection rate and the misdetection rate are less than 3%. The detection accuracy rate is more than 97%,which proved the method is advanced and effective.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余永維,杜柳青,閆 哲,許賀作.基于深度學(xué)習(xí)特征的鑄件缺陷射線圖像動態(tài)檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):407-412. Yu Yongwei, Du Liuqing, Yan Zhe, Xu Hezuo. Dynamic Detection of Casting Defects Radiographic Image Based on Deep Learning Feature[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(7):407-412.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-04-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-07-10
  • 出版日期: 2016-07-10