亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于非下采樣Shearlet變換的磁瓦表面裂紋檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

“十二五”國家科技支撐計劃項目(2015BAF27B01)和四川省科技支撐計劃項目(2016GZ0160)


Detection of Surface Crack Defects in Magnetic Tile Images Based on Nonsubsampled Shearlet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對磁瓦表面裂紋缺陷圖像背景不均勻、對比度低和存在紋理干擾等特點,提出了一種基于非下采樣Shearlet變換(Nonsubsampled Shearlet transform, NSST)的裂紋檢測方法。首先對原始圖像進行多尺度、多方向NSST分解,得到一個低頻子帶和多個高頻子帶,然后利用各向異性擴散和改進的γ增強方法對高頻子帶進行濾波和增強;同時利用二維高斯函數(shù)對低頻子帶進行卷積操作來構造高斯多尺度空間,估計出圖像的主要背景,并通過背景差法得到均勻的低頻目標圖像。最后通過重構NSST系數(shù)得到去噪和增強后的均勻目標圖像,利用自適應閾值分割和區(qū)域連通法提取裂紋缺陷。實驗結果表明,所提方法檢測準確率達92.5%,優(yōu)于基于形態(tài)學濾波方法、基于Curvelet變換方法和基于Shearlet變換方法等現(xiàn)有磁瓦表面裂紋檢測方法。

    Abstract:

    A novel algorithm based on nonsubsampled Shearlet transform (NSST), Gaussian multi-scale space and anisotropic diffusion was proposed for detecting crack defects with uneven background, low contrast, noise corruption and textured interference in magnetic tile surface images. Firstly, NSST was employed to decompose the source magnetic tile image into one low-pass subband and a series of high-pass subbands. Then the anisotropic diffusion and the modified γ enhancement method were applied to remove the noise and enhance the weak object information in the high-pass subbands, respectively. Meanwhile, the background was estimated in the Gaussian multi-scale space constructed by convolving the low-pass subband with a varied two-dimensional Gaussian functions, and the even low-pass object could be obtained by using background subtraction. Finally, inverse NSST was utilized to reconstruct the enhanced object image which was free from noise and grinding texture interference, and crack defects could be segmented from the reconstructed image by applying the adaptive threshold method and regional connectivity function. Experimental results demonstrate that compared with four existing methods (OTSU method, method based on the adaptive morphological filtering, method based on Curvelet transform and texture feature measurement and method based on Shearlet transform), the proposed method achieves better performance in terms of defect detection accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊成立,殷鳴,蔣紅海,向召偉,殷國富.基于非下采樣Shearlet變換的磁瓦表面裂紋檢測[J].農(nóng)業(yè)機械學報,2017,48(3):405-412. YANG Chengli, YIN Ming, JIANG Honghai, XIANG Zhaowei, YIN Guofu. Detection of Surface Crack Defects in Magnetic Tile Images Based on Nonsubsampled Shearlet Transform[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):405-412.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-03-10
  • 出版日期: