亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于貪心遺傳算法的穴盤苗補(bǔ)栽路徑優(yōu)化
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(51675488)、浙江省自然科學(xué)基金項目(LQ16E050006)、浙江省科技廳公益項目(2017C32048)、浙江省重大科技專項重點(diǎn)農(nóng)業(yè)項目(2015C02004)和浙江理工大學(xué)科研啟動基金項目(14022211—Y)


Optimization of Replugging Tour Planning Based on Greedy Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    溫室育苗需要通過補(bǔ)苗移栽作業(yè)用健康缽苗替換穴盤內(nèi)未發(fā)芽或劣質(zhì)的缽苗,保證缽苗的質(zhì)量。自動補(bǔ)苗移栽機(jī)可利用機(jī)器視覺獲取穴盤苗健康信息,控制末端執(zhí)行器抓取缽苗進(jìn)行補(bǔ)苗作業(yè),移栽效率高。穴盤內(nèi)需補(bǔ)苗孔穴的位置具有隨機(jī)性,對補(bǔ)栽路徑進(jìn)行規(guī)劃,可進(jìn)一步提高補(bǔ)栽效率。本文綜合貪心算法和遺傳算法的特性提出一種貪心遺傳算法,在分段步長取8,優(yōu)化代數(shù)取100時,可實現(xiàn)稀疏和密集穴盤的補(bǔ)栽路徑優(yōu)化,具有魯棒性。貪心遺傳算法所規(guī)劃補(bǔ)苗路徑長度與全遺傳算法接近,均值差在443mm以內(nèi);相比優(yōu)化前的固定順序法,貪心遺傳算法路徑長度可縮短33.8%~41.3%,縮短長度隨空穴數(shù)量增加而加長;貪心遺傳算法與全遺傳算法規(guī)劃補(bǔ)栽路徑耗時分別為1.81s和5.59s。對比可知,貪心遺傳算法更有利于自動移栽機(jī)輸送單元和移栽單元間的動作銜接,可進(jìn)一步提高自動移栽機(jī)效率。

    Abstract:

    Replugging tasks make seedling in well consistency in greenhouses. Healthy seedlings are used to replace the ungerminated or poor growth seedlings. This task is labor intensive by traditional manual method. And automated transplanters do the replugging task in high efficiency and good quality. According to the seedlings healthy information which is detected by machine vision, end-effector grasping healthy seedlings does the repetitive replugging task. The position of vacancy holes in plug tray are randomly. Optimizing the seedling grasping sequence can decrease the transplanting path which can improve working efficiency. A greedy genetic algorithm (GGA) was proposed for replugging tour planning which combined the character of greedy algorithm (GAS) and genetic algorithm (GA). The algorithm was robustness. The GGA was suitable for sparse and dense trays’ path optimization when segmentation step value and hereditary algebra were 8 and 100, respectively. The average path deviation of GGA and GA was 443 mm. And their effectiveness was better than that of GAS. Compared with fixed sequence method (FS), the range of optimization amplitude for GGA was 33.8%~41.3%. GA and GGA could finish the optimization operation in 1.81s and 5.59s, respectively. The results showed that GGA was more suitable for the action requirement between delivery unit and transplanting unit. The working efficiency of automated transplanter was further improved.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

賀磊盈,楊太瑋,武傳宇,俞亞新,童俊華,陳成錦.基于貪心遺傳算法的穴盤苗補(bǔ)栽路徑優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報,2017,48(5):36-43. HE Leiying, YANG Taiwei, WU Chuanyu, YU Yaxin, TONG Junhua, CHEN Chengjin. Optimization of Replugging Tour Planning Based on Greedy Genetic Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(5):36-43.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-05-10
  • 出版日期: