亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

6R焊接機(jī)器人逆解算法與焊接軌跡誤差分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

“十二五”國家科技支撐計(jì)劃項(xiàng)目 (2015BAF27B01)、四川省科技計(jì)劃項(xiàng)目(2015GZ0036、2016GZ0195)、廣西高校中青年教師基礎(chǔ)能力提升項(xiàng)目(KY2016YB535)和廣西高校機(jī)器人與焊接重點(diǎn)實(shí)驗(yàn)室主任基金項(xiàng)目(JQR2015ZR04)


Solution of Inverse Kinematics and Welding Trajectory Error Analysis for 6R Welding Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高6R焊接機(jī)器人的位姿精度和焊接軌跡的準(zhǔn)確度,提出了一種基于RBF神經(jīng)網(wǎng)絡(luò)的6R焊接機(jī)器人逆運(yùn)動(dòng)學(xué)求解方法。針對6R焊接機(jī)器人逆運(yùn)動(dòng)學(xué)方程組具有高維、非線性、求解復(fù)雜的特點(diǎn),基于RBF神經(jīng)網(wǎng)絡(luò)建立運(yùn)動(dòng)學(xué)逆解預(yù)測模型,采用尺度空間理論對焊接機(jī)器人的位姿參數(shù)樣本所在的工作空間進(jìn)行分區(qū),采用均勻設(shè)計(jì)法和模糊聚類理論對分區(qū)后的訓(xùn)練樣本進(jìn)行優(yōu)選,并根據(jù)Z-Y-Z坐標(biāo)轉(zhuǎn)換原理進(jìn)行轉(zhuǎn)換和歸一化處理,將逆運(yùn)動(dòng)學(xué)求解問題轉(zhuǎn)換為基于RBF的6輸入6輸出預(yù)測系統(tǒng)。運(yùn)用該系統(tǒng)對6R焊接機(jī)器人進(jìn)行了復(fù)雜焊接軌跡仿真和點(diǎn)焊實(shí)驗(yàn),并與基于組合優(yōu)化迭代法和BP神經(jīng)網(wǎng)絡(luò)的逆運(yùn)動(dòng)學(xué)求解效果與焊接精度進(jìn)行了比較,結(jié)果表明,基于RBF的6R焊接機(jī)器人運(yùn)動(dòng)學(xué)逆解預(yù)測模型具有求解簡單、精度高、便于軌跡規(guī)劃的特點(diǎn),證明了該方法的可行性和有效性。

    Abstract:

    A new method of solving inverse kinematics of 6R welding robot based on radial basis function(RBF) neural networks was presented to improve the precision of the position and orientation and the accuracy of welding trajectory for the 6R welding robot. The inverse kinematics solution prediction model of the 6R welding robot was established based on RBF neural networks because the inverse kinematics equations were high-dimensionally nonlinear and solving these equations was complex. The work space in which 6R welding robot position and orientation sample parameters were situated was divided based on scale-space theory. After that the training sample set was selected optimally based on uniform design and the cluster theory. The parameters were transformed and normalized according to the Z-Y-Z coordinate conversion principle. The problem of solving the inverse kinematics equations was transformed into six inputs and six outputs prediction system based on RBF neural network. Complex movement trajectory of 6R robot was simulated and the spot welding experiments were done by means of this prediction system. The results of the prediction and welding track accuracy were compared with the inverse kinematics solution based on combinatorial optimization iteration algorithm and back propagation (BP) neural networks. The results showed that the RBF prediction model of solving 6R welding robot inverse kinematics equations was simpler, more accurate and easier to do trajectory planning, and it was proved to be feasible and effective.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓興國,宋小輝,殷鳴,陳海軍,殷國富.6R焊接機(jī)器人逆解算法與焊接軌跡誤差分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):384-390,412. HAN Xingguo, SONG Xiaohui, YIN Ming, CHEN Haijun, YIN Guofu. Solution of Inverse Kinematics and Welding Trajectory Error Analysis for 6R Welding Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):384-390,412.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-11-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-08-10
  • 出版日期: