亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于DOM及LiDAR的多尺度分割與面向?qū)ο罅窒斗诸?/div>
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31300533)和農(nóng)業(yè)部農(nóng)業(yè)水資源高效利用重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題項(xiàng)目(2015001、2015003)


Multiscale Forest Gap Segmentation and Object-oriented Classification Based on DOM and LiDAR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為研究分割尺度對(duì)航空正射影像(DOM)與LiDAR數(shù)據(jù)協(xié)同面向?qū)ο罅窒斗指钆c分類的影響,以東北典型的天然次生林帽兒山實(shí)驗(yàn)林場(chǎng)東林施業(yè)區(qū)為試驗(yàn)區(qū),對(duì)DOM與LiDAR數(shù)據(jù)進(jìn)行多尺度分割與面向?qū)ο罅窒斗诸?。分割過(guò)程中,采用基于DOM分割、基于LiDAR數(shù)據(jù)分割、DOM&LiDAR協(xié)同分割3種分割方案。每種分割方案采用10種尺度。在每種尺度應(yīng)用兩種數(shù)據(jù)提取的光譜和高度兩種特征,采用支持向量機(jī)分類器(SVM)進(jìn)行林隙分類。研究結(jié)果表明:3種分割與分類方案分類精度隨尺度的增大整體呈現(xiàn)下降的趨勢(shì),與ED3(Modified)趨勢(shì)相反。基于LiDAR數(shù)據(jù)在尺度參數(shù)10獲得了最優(yōu)分割結(jié)果。在所有尺度上(10~100),基于LiDAR數(shù)據(jù)分割與分類精度高于其他兩種數(shù)據(jù)源的分類精度,相比單獨(dú)使用DOM優(yōu)勢(shì)更加明顯?;贚iDAR數(shù)據(jù)分割與分類方案在尺度參數(shù)10時(shí)獲得了最高分類精度(Kappa系數(shù)為80%)。3種分割與分類方案最優(yōu)尺度的分類精度顯著高于其他尺度分類精度。分割尺度對(duì)面向?qū)ο罅窒斗诸惤Y(jié)果有重要影響。

    Abstract:

    Aiming to study the effect of segmentation scale on object based segmentation and classification of forest gap through fusion of aerial orthophoto (DOM) and LiDAR data, the typical natural secondary forest in Maoershan Experimental Forest Farm Donglin Industry Zone of northeastern China was selected as the experimental area. The DOM and airborne LiDAR were used for multiscale segmentation and object-oriented forest gap classification. In the process of image segmentation, three segmentation schemes (segmentation of DOM, segmentation of LiDAR data and segmentation of a fusion of DOM and LiDAR data) were adopted. For each segmentation scheme, 10 segmentation scales were set, then based on the segmentation results, spectral and height features extracted from DOM and LiDAR data were used for object-oriented forest gap classification with the support vector machine (SVM) classifier. The results showed that the classification accuracies of three segmentation and classification schemes showed a decline trend with the increase of scale, which was opposite with trend of ED3 (Modified). Based on the LiDAR data at scale parameter of 10, the best segmentation result was got. At all scale (10~100), the classification accuracy based on LiDAR segmentation and classification was higher than that based on two other data segmentation and classification schemes, and had the more obvious advantage than using only DOM. Based on scheme of LiDAR data segmentation and classification at scale parameter of 10, the highest classification accuracy was got with Kappa coefficient of 80%. The classification accuracies of three segmentation and classification schemes at the optimal scale were significantly higher than these at other scales. The segmentation scale had important effect on the object-oriented forest gaps classification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

毛學(xué)剛,侯吉宇,白雪峰,范文義.基于DOM及LiDAR的多尺度分割與面向?qū)ο罅窒斗诸怺J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):152-159. MAO Xuegang, HOU Jiyu, BAI Xuefeng, FAN Wenyi. Multiscale Forest Gap Segmentation and Object-oriented Classification Based on DOM and LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):152-159.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-06-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-09-10
  • 出版日期: