亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于時(shí)間序列MODIS的農(nóng)作物類(lèi)型空間制圖方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41671418、41471342、41371326)和國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2013AA10230103)


Crop Type Mapping Method Based on Time-series MODIS Data in Heilongjiang Province
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為快速獲取大范圍種植結(jié)構(gòu)復(fù)雜區(qū)域的作物種植面積,以MODIS數(shù)據(jù)為數(shù)據(jù)源,選擇歸一化植被指數(shù)(Normalized difference vegetation index, NDVI)、增強(qiáng)植被指數(shù)(Enhanced vegetation index, EVI)、寬動(dòng)態(tài)植被指數(shù)(Wide dynamic range vegetation index, WDRVI)、地表水分指數(shù)(Land surface water index,LSWI)、歸一化雪被指數(shù)(Normalized difference snow index, NDSI)5種特征,結(jié)合同步的實(shí)地調(diào)查樣本點(diǎn),采用支持向量機(jī)算法 (Support vector machines, SVM)提取黑龍江省主要農(nóng)作物的種植面積。研究表明,在待選特征中NDVI、EVI與LSWI指數(shù)組合取得了最高的分類(lèi)精度,總體分類(lèi)精度為74.18%,Kappa系數(shù)為0.60;支持向量機(jī)算法與最大似然算法、隨機(jī)森林算法相比,分類(lèi)精度更優(yōu)。該方法為在大區(qū)域中提取農(nóng)作物種植面積提供了參考價(jià)值。

    Abstract:

    Mapping the crop planting pattern and cropped area rapidly and accurately in Heilongjiang Province is important for agricultural monitoring。MOD09 and MOD13 were selected as data source for its high time resolution and good quality. To explore the optimal feature and classification method which can obtain the spatial distribution of the main crops in Heilongjiang Province, NDVI, EVI, WDRVI, LSWI and NDSI were selected as input data for crop classification based on time-series of MODIS data and combined with field survey sample points. The results showed that the combination of NDVI, EVI and LSWI joint with support vector machine (SVM) achieved the best accuracy, the overall classification accuracy was 74.18% and the Kappa coefficient was 0.60. The results showed that the support vector machine algorithm outperformed the maximum likelihood algorithm and the random forest algorithm. In Heilongjiang Province, the best period for sorting rice is the transplanting period in May, which can be characterized by LSWI. Theoptimal period for distinguishing between corn and soybean was from the end of September to the beginning of October, which was the period when the soybean was harvested and the corn was not, and the optimal classification feature was EVI. This method provided a reference value for cropped area mapping in other agricultural regions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃健熙,侯矞焯,武洪峰,劉峻明,朱德海.基于時(shí)間序列MODIS的農(nóng)作物類(lèi)型空間制圖方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(10):142-147,285. HUANG Jianxi, HOU Yuzhuo, WU Hongfeng, LIU Junming, ZHU Dehai. Crop Type Mapping Method Based on Time-series MODIS Data in Heilongjiang Province[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(10):142-147,285.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-02-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-10-10
  • 出版日期:
文章二維碼