亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于魚群算法的極限學(xué)習(xí)機(jī)影像分類方法優(yōu)化
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國土資源部公益性行業(yè)科研專項(xiàng)(201211011)和上海市科學(xué)技術(shù)委員會(huì)科研計(jì)劃項(xiàng)目(13231203602)


Optimization of ELM Classification Model for Remote Sensing Image Based on Artificial Fish-swarm Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在傳統(tǒng)極限學(xué)習(xí)機(jī)(ELM)研究的基礎(chǔ)上,考慮到傳統(tǒng)ELM參數(shù)的不確定會(huì)導(dǎo)致整體分類精度下降,利用仿生魚群算法(AF)對ELM的小波核參數(shù)和正則化參數(shù)進(jìn)行尋優(yōu),并構(gòu)造參數(shù)優(yōu)化后的小波ELM影像分類模型(AF-ELM)。通過實(shí)驗(yàn)比較了該算法與人工神經(jīng)網(wǎng)路(ANN)、支持向量機(jī)(SVM)、極限學(xué)習(xí)機(jī)(ELM)等標(biāo)準(zhǔn)分類器在遙感影像分類上的精度與速度差異,并且與ELM多項(xiàng)式核、RBF核分類算法進(jìn)行比較分析,驗(yàn)證了AF-ELM在分類速度和精度上的優(yōu)越性。實(shí)驗(yàn)結(jié)果表明,AF-ELM分類方法分類速度較快,精度較高,均優(yōu)于其他分類方法。能較好地應(yīng)用于遙感影像上各類地物要素的自動(dòng)提取。

    Abstract:

    As a new means of earth resource survey, land use change and coverage (LUCC) and ecological environment monitoring, remote sensing technology has a great advantage. The automatic classification for remote sensing image is the key technology to extract rich ground-object information and monitor the dynamic change of LUCC. Machine learning can flexibly build a model portrayed by parameters, and automatically extract information, which has been widely used in image classification because of its good robustness and convergence, and easy to be combined with other methods. Based on the study of traditional extreme learning machine (ELM) theory, the optimal selection of kernel function parameters and regularizing parameters were performed by using artificial fish swarm algorithm (AF) and the optimal ELM image classification model (AF-ELM) was constructed. The classification model used AF to optimize the wavelet kernel parameters and regularizing parameters of ELM to improve the classification accuracy. After that the classification for multi-spectral remote sensing image was implemented by using the parameter-optimized ELM classifier, meanwhile, compared with some standard classifier such as artificial neural networks(ANM), support vector machine (SVM) and extreme learning machine (ELM), and it was comparatively analyzed with the ELM polynomial kernel and RBF kernel classification algorithm. The experiments proved that optimal AF-ELM classifier was more faster and accurate, which was superior to those before-mentioned classifiers. It can be used for the automatic extraction of various elements from remote sensing image.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林怡,季昊巍,NICO Sneeuw,葉勤.基于魚群算法的極限學(xué)習(xí)機(jī)影像分類方法優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(10):156-164. LIN Yi, JI Haowei, NICO Sneeuw, YE Qin. Optimization of ELM Classification Model for Remote Sensing Image Based on Artificial Fish-swarm Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(10):156-164.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-06-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-10-10
  • 出版日期:
文章二維碼