亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

空間剛?cè)狁詈喜⒙?lián)機(jī)器人動(dòng)力學(xué)求解策略
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51275353)、天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃項(xiàng)目(17JCYBJC18300、14JCZDJC39100)和天津市教委科研計(jì)劃項(xiàng)目(2017KJ259)


Dynamic Solution for Spatial Rigid-flexible Parallel Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)空間剛?cè)狁詈喜⒙?lián)機(jī)器人在動(dòng)力學(xué)方程求解過(guò)程中存在的違約問(wèn)題,提出了一種基于瞬態(tài)剛體校正法的非線(xiàn)性動(dòng)力學(xué)模型求解方法。利用自然坐標(biāo)法和絕對(duì)節(jié)點(diǎn)坐標(biāo)法構(gòu)建該3-RRRU并聯(lián)機(jī)器人的正動(dòng)力學(xué)模型與逆動(dòng)力學(xué)模型,考慮各支鏈柔性空間梁?jiǎn)卧募羟行?yīng),并可描述其大范圍非線(xiàn)性彈性變形?;谧匀蛔鴺?biāo)法和剛性機(jī)構(gòu)的運(yùn)動(dòng)學(xué)模型,分別提出2種動(dòng)力學(xué)模型的瞬態(tài)剛體校正法,同時(shí)從系統(tǒng)能量等角度總結(jié)出獲取該動(dòng)力學(xué)系統(tǒng)穩(wěn)定因果解的求解策略。仿真結(jié)果表明,動(dòng)力學(xué)方程的求解精度為10-6,約束方程的相容誤差為10-8,滿(mǎn)足工程應(yīng)用的要求,且有效地改善了動(dòng)力學(xué)系統(tǒng)的綜合收斂性能。通過(guò)圓形軌跡跟蹤實(shí)驗(yàn)可知,與理想剛性模型的控制方法相比,基于逆動(dòng)力學(xué)穩(wěn)定因果解構(gòu)建控制方法最大跟蹤誤差降低了0.372mm,圓度誤差降低了1.46mm;各柔性桿上特征點(diǎn)處主應(yīng)變測(cè)量值與理論計(jì)算值均處同一數(shù)量級(jí),且具有相同的變化趨勢(shì),從而驗(yàn)證了該方法的有效性。

    Abstract:

    In order to solve the compatibility problem occurred during the iteration for the dynamics of a spatial rigid-flexible parallel robot, a nonlinear solution approach was proposed based on a transient kinematic correction method. The nonlinear forward and inverse dynamics of a spatial 3-RRRU parallel robot with flexible links were constructed based on both natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF). The derived models took into account the shear deformation and could describe large deformation for each beam. The transient kinematic correction methods were developed for the both dynamics based on NCF and kinematic model of the robot. The strategy for stable causal solution was also presented based on the aspects such as system energy of the dynamic system. The simulation results showed that the solution precision of inverse dynamics was 10-6 and the compatible error of constraints was 10-8, which met the requirements for engineering applications and could effectively improve the overall convergent performance for the dynamic system. A trajectory tracking experiment was carried out based on a prescribed circular trajectory. Compared with the control strategy on rigid dynamic model, the maximum tracking error and roundness error based on the provided control strategy were decreased by 0.372mm and 1.46mm, respectively. The calculated principal strains of the typical points on the flexible links were at the same levels and variation trends as the measured strains on them. The validity of the developed method was thus verified.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉涼,趙新華,周海波,王嘉斌.空間剛?cè)狁詈喜⒙?lián)機(jī)器人動(dòng)力學(xué)求解策略[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):376-384. LIU Liang, ZHAO Xinhua, ZHOU Haibo, WANG Jiabin. Dynamic Solution for Spatial Rigid-flexible Parallel Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(2):376-384.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-06-30
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2018-02-10
  • 出版日期:
文章二維碼