亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Sentinel-1和Sentinel-2數(shù)據(jù)融合的農(nóng)作物分類
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41301450、61701416)和陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2016JQ6061)


Crop Classification Based on Data Fusion of Sentinel-1 and Sentinel-2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于光學(xué)影像的遙感技術(shù)受云雨、晝夜影響較大,導(dǎo)致獲取連續(xù)的作物時(shí)序生長曲線較困難,而雷達(dá)影像作為主動式成像,能夠很好地克服這一缺陷。本文以陜西省渭南市大荔縣某農(nóng)場為研究區(qū)域,分別采用最大似然法(Maximum likelihood,ML)和支持向量機(jī)(Support vector machine,SVM)2種方法,融合Sentinel-1雷達(dá)影像和Sentinel-2光學(xué)影像,提高農(nóng)作物的分類精度。研究結(jié)果表明,融合數(shù)據(jù)的農(nóng)作物分類精度相比光學(xué)數(shù)據(jù)分類精度有所提高。在無云層覆蓋的情況下,利用SVM方法融合Sentinel-2的紅、綠、藍(lán)、近紅外4個(gè)波段數(shù)據(jù)與Sentinel-1數(shù)據(jù),總體分類精度提高了2個(gè)百分點(diǎn),Kappa系數(shù)提高了5個(gè)百分點(diǎn);在有少量云層覆蓋情況下,利用ML處理融合數(shù)據(jù)的分類結(jié)果精度和Kappa系數(shù)分別提高2個(gè)百分點(diǎn)和4個(gè)百分點(diǎn),SVM方法下的分類精度提高了6個(gè)百分點(diǎn),Kappa系數(shù)提高了8個(gè)百分點(diǎn)。

    Abstract:

    Since remote sensing technology based on optical images is usually influenced by cloud and rain, it’s difficult to acquire continuous crop growth curves in some areas. Radar, as an active remote sensing technique, can overcome the disadvantage successfully. Taking the farm located in the city of Weinan of Shaanxi Province as study area, two methods of maximum likelihood (ML) and support vector machine (SVM) were adopted to combine multi-sensor remote sensing data of Sentinel-1 and Sentinel-2, and thus improve crop classification accuracy. The results showed that classification results with fusion data were better than those of optical data. The classification result of fusion data composed of Sentinel-1 and Sentinel-2’s red, green, blue and near-infrared bands with no cloud were improved evidently with SVM method. The overall accuracy and Kappa coefficient were raised by 2 percentage points and 5 percentage points, respectively. In the case of a few cloud cover in the study site, the overall accuracy and Kappa coefficient with ML method were increased by 2 percentage points and 4 percentage points, respectively. With SVM method, the overall accuracy and Kappa coefficient were raised by almost 6 percentage points and 8 percentage points, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭交,朱琳,靳標(biāo).基于Sentinel-1和Sentinel-2數(shù)據(jù)融合的農(nóng)作物分類[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):192-198. GUO Jiao, ZHU Lin, JIN Biao. Crop Classification Based on Data Fusion of Sentinel-1 and Sentinel-2[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(4):192-198.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-09-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-04-10
  • 出版日期: