亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于點云的谷粒高通量表型信息自動提取技術
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41671452、41701532)、中央高校基本科研業(yè)務費專項資金項目(2042016kf0012)和中國博士后科學基金項目(2017M612510)


Automatic Extraction of High-throughput Phenotypic Information of Grain Based on Point Cloud
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在進行水稻的數(shù)字化考種、表型與基因關聯(lián)分析和數(shù)字農(nóng)業(yè)仿真模擬時,需要大量的谷粒表型信息作數(shù)據(jù)支撐。本文提出了一種基于三維點云的谷粒高通量表型信息自動提取方法,能同時自動獲取谷粒的三維模型和40個表型參數(shù),實現(xiàn)谷粒形狀的定量和定性描述。首先,通過對谷粒點云數(shù)據(jù)進行聚類分析,完成谷粒點云的分類;其次,實現(xiàn)谷粒的三維重建,對谷粒離散點云進行柱面構(gòu)網(wǎng),獲取谷粒點云的三維模型數(shù)據(jù);最后,根據(jù)不同表型參數(shù)的特點,實現(xiàn)了谷粒的三維表面積和體積、長、寬、高、3個主成分剖面的周長和面積等11個基本參數(shù)與長寬比、長高比和體積比等11個衍生參數(shù)以及18個形狀因子的自動提取。利用Handyscan 700型手持式激光掃描儀獲取的谷粒高精度點云數(shù)據(jù)進行實驗,成功實現(xiàn)了谷粒表型參數(shù)的自動提取,測量結(jié)果可達毫米級。基于主成分方法分析了各表型參數(shù)的權(quán)重。以游標卡尺測量值和Geomagic Studio測量值作為真值,長、寬、高的平均相對誤差為1.14%、1.15%和1.62%,體積和表面積的相對誤差為零,3個主成分剖面面積的平均相對誤差為1.82%、2.12%和2.43%。本文方法與人工測量方法及軟件測量方法相比,精度相當,且具有批量、自動、人工干預少(僅數(shù)據(jù)采集階段需要人工操作)以及效率高的特點。

    Abstract:

    Large amount of grain phenotypic information is needed in researches such as digital grain traits investigation, phenotype and gene association analysis and digital agriculture simulation. A method for automatic extraction of grain high-throughput phenotypic information based on point cloud was proposed, aiming to automatically obtain three-dimensional (3D) grain model and 40 phenotypic parameters. Firstly, the classification of grain point cloud was completed through cluster analysis. Secondly, 3D grain model was reconstructed with cylindrical mesh method. Finally, according to the characteristics of different phenotypic parameters, 11 primary parameters, 11 derived parameters and 18 shape factors were automatically extracted. Experiment using data obtained by hand-held laser scanner (Handyscan 700) showed that the measurement result could reach millimeter level. The weight of each phenotypic parameter was analyzed based on principal component analysis method. With parameters measured by vernier caliper and Geomagic Studio as the true value, the average relative error of length, width, height, surface area and volume, the cross-sectional area of three principal component sections was 1.14%, 1.15%, 1.62%, 0, 1.82%, 2.12% and 2.43%, respectively. Compared with the manual measurement method and the software measurement method, the results of the proposed method was competitively accurate, which had advantages of batch processing, automation, less manual intervention (only in data acquisition) and high efficiency.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃霞,鄭順義,桂力,趙麗科,馬浩.基于點云的谷粒高通量表型信息自動提取技術[J].農(nóng)業(yè)機械學報,2018,49(4):257-264,248. HUANG Xia, ZHENG Shunyi, GUI Li, ZHAO Like, MA Hao. Automatic Extraction of High-throughput Phenotypic Information of Grain Based on Point Cloud[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(4):257-264,248.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-08-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-04-10
  • 出版日期: