亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于時(shí)序光譜和高分紋理分析的制種玉米田遙感識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2013AA10230103)


Seed Maize Field Identification Based on Analysis of Remote Sensing Timing Spectrum and High Resolution Texture
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    根據(jù)制種玉米與其他作物在中高分辨率遙感影像上的光譜和紋理差異,利用多源遙感數(shù)據(jù),以提取制種玉米種植田為研究目標(biāo),提出了作物多時(shí)相光譜特征分析的植被指數(shù)體系,多維度反映了作物不同光譜差異;在紋理檢測(cè)前加入圖像旋轉(zhuǎn)不變處理,解決了遙感影像中作物田紋理方向問(wèn)題;最后構(gòu)建了多時(shí)相光譜特征和高空間分辨率遙感影像LBP-GLCM紋理特征的制種玉米田識(shí)別方法體系。以新疆霍城縣為研究區(qū),利用上述方法體系結(jié)合隨機(jī)森林分類器,通過(guò)實(shí)驗(yàn)得到分類總體精度為90.57%,Kappa系數(shù)為0.79,制種玉米田分類結(jié)果用戶精度為99.20%,制圖精度為86.68%,基本滿足對(duì)制種玉米田的識(shí)別需求。

    Abstract:

    Using remote sensing technology to rapidly and accurately differentiate the seed maize fields and grain maize fields is the urgent need of seed production and market supervision, and also is an important aspect of the research on the classification and planting mode of crops by using remote sensing to monitor. Based on the spectral and texture differences of seed maize and other crops in the high resolution remote sensing image, the multi-source remote sensing data were used, including GF-1 WFV multi-spectral image, Landsat8 OLI image and GF-2 PMS full-color image to extract the seed maize fields as research target, the vegetation index system of crop multi-temporal spectral characteristics was proposed, which multidimensionally reflected different spectral differences between crops;and adding the image rotation invariant processing before the texture detection, to solve the problem of crop field texture direction in remote sensing image;finally, the identification method system of seed maize fields based on multi-temporal spectral feature and LBP-GLCM texture feature in high spatial resolution remote sensing image were established. Qitai County, Xinjiang Uygur Autonomous Region was taken as the study area to verify, based on the above method and the random forest classifier, the overall accuracy was 90.57%, the Kappa coefficient was 0.79. The accuracy of the classification results of seed maize field was 99.20%, and the mapping accuracy was 86.68%, which basically satisfied the needs of seed maize recognition requirements. The research result not only provided a method for the monitoring of hybrid maize seed production in China, but also provided a technical reference for monitoring and supervision of hybrid seed field with the same planting system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張超,喬敏,劉哲,劉帝佑,金虹杉,朱德海.基于時(shí)序光譜和高分紋理分析的制種玉米田遙感識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):218-225. ZHANG Chao, QIAO Min, LIU Zhe, LIU Diyou, JIN Hongshan, ZHU Dehai. Seed Maize Field Identification Based on Analysis of Remote Sensing Timing Spectrum and High Resolution Texture[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):218-225.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-11-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-05-10
  • 出版日期: