亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無(wú)人機(jī)多光譜圖像的云南松蟲(chóng)害區(qū)域識(shí)別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

北京市科技計(jì)劃項(xiàng)目(Z171100001417005)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(2016ZCQ08)


Identification Method of Pinus yunnanensis Pest Area Based on UAV Multispectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)云南省祥云縣林區(qū)云南松蟲(chóng)害區(qū)域高效識(shí)別的需求,為更加高效準(zhǔn)確地對(duì)蟲(chóng)害信息進(jìn)行監(jiān)測(cè),本文搭建了林區(qū)八旋翼多光譜圖像采集平臺(tái),基于無(wú)人機(jī)多光譜圖像提出了一種Jeffries-Matusita(J-M)距離優(yōu)化的反向傳播神經(jīng)網(wǎng)絡(luò)(BP)分類(lèi)方法。該方法首先引入J-M距離實(shí)現(xiàn)了對(duì)訓(xùn)練樣本的優(yōu)化,有效降低了“同譜異物”和“同物異譜”現(xiàn)象的影響,然后基于顏色矩和灰度共生矩陣提取了圖像的顏色和紋理特征,并提取了580、680、800Nm共3個(gè)波段的相對(duì)光譜反射率作為光譜值特征,建立了5個(gè)植被指數(shù)模型,最后利用BP神經(jīng)網(wǎng)絡(luò)算法對(duì)顏色、紋理、光譜值和植被指數(shù)4種特征向量進(jìn)行訓(xùn)練識(shí)別,實(shí)現(xiàn)了對(duì)蟲(chóng)害區(qū)域的分類(lèi)識(shí)別。利用所提算法從總體分類(lèi)精度和Kappa指數(shù)兩方面與傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)(SVM)算法進(jìn)行對(duì)比試驗(yàn)。試驗(yàn)結(jié)果表明,本文算法總體分類(lèi)精度和Kappa指數(shù)分別達(dá)到了94.01%和0.92,建模時(shí)間相對(duì)于傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)縮短了38%,總體分類(lèi)效果優(yōu)于傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)和SVM算法。

    Abstract:

    In order to satisfy the needs of effective recognition in pest-affected region, a multispectral images acquisition platform was built to monitor the pest-related information efficiently and accurately in Yunnan pine forest region of Yunnan Province. Aneural network of Jeffries-Matusita(J-M)distance optimized back-propagation(BP)neural network was proposed based on unmanned aerial vehicle(UAV)multispectral images. Firstly, the method realized the optimization process of the training samples by introducing the J-M distance concept, which reduced the influence of both “similar spectral from multiple objects” and “multiple spectral from similar objects”. Then, the color and texture features of the images were extracted based on their color and the gray-scale co-occurrence matrix. Three bands of relative spectral reflectance, namely 580Nm, 680Nm and 800Nm were extracted as spectral characteristics. Meantime, five vegetation index models were established to identify pest area. Finally, BP neural network algorithm was applied for training and identifying four feature vector quantities, including color, texture, spectral and vegetation index, which greatly achieved the identification and classification goal of pest region. The proposed algorithm was compared with the traditional BP neural network and support vector machine(SVM)algorithm from both general classification precision and the Kappa index. The experimental results showed that the overall accuracy index of classification and the Kappa index of the algorithm reached 94.01% and 0.92, respectively, which was superior to traditional BP neural network and SVM algorithm. Besides the modeling time was shortened by 38% when compared with the traditional BP neural network method. The improved efficiency satisfied the high efficiency identification needs of Yunnan pine pest area in Xiangyun County.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張軍國(guó),韓歡慶,胡春鶴,駱有慶.基于無(wú)人機(jī)多光譜圖像的云南松蟲(chóng)害區(qū)域識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):249-255. ZHANG Junguo, HAN Huanqing, HU Chunhe, LUO Youqing. Identification Method of Pinus yunnanensis Pest Area Based on UAV Multispectral Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):249-255.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-02-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-05-10
  • 出版日期: