亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于變尺度格網(wǎng)索引與機(jī)器學(xué)習(xí)的行道樹靶標(biāo)點(diǎn)云識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家林業(yè)局948項(xiàng)目(2015-4-56)、江蘇省基礎(chǔ)研究計(jì)劃-青年基金項(xiàng)目(BK20170930)和國(guó)家自然科學(xué)基金面上項(xiàng)目(61473156)


Point Cloud Recognition of Street Tree Target Based on Variable-scale Grid Index and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)行道樹連續(xù)噴霧施藥方式嚴(yán)重污染環(huán)境,果園對(duì)靶施藥技術(shù)難以推廣至復(fù)雜城區(qū)環(huán)境等問題,應(yīng)用車載2D LiDAR獲取街道三維點(diǎn)云數(shù)據(jù),研究行道樹靶標(biāo)識(shí)別方法。構(gòu)建變尺度格網(wǎng)點(diǎn)云索引結(jié)構(gòu),實(shí)現(xiàn)鄰域快速搜索及點(diǎn)云在線處理;提取高程、深度、密度、協(xié)方差矩陣等11個(gè)點(diǎn)云球域特征,分析特征分布特性,采用基于徑向基核函數(shù)的支持向量機(jī)算法融合特征,學(xué)習(xí)樹冠點(diǎn)云分類器;采用FIFO緩沖區(qū)保存點(diǎn)云幀序列,實(shí)現(xiàn)行道樹靶標(biāo)在線識(shí)別。實(shí)驗(yàn)結(jié)果表明,該方法能夠?qū)崿F(xiàn)行道樹靶標(biāo)精確識(shí)別,在測(cè)試集上的分類錯(cuò)誤率小于0.8%,檢出率大于99.4%,虛警率小于0.9%,鑒別力最強(qiáng)的4個(gè)特征從高到低依次是高程均值、深度均值、高程范圍和高程方差

    Abstract:

    Street tree continuous spray methods cause serious environmental pollution, however, the existing target spray technologies for tree are difficult to extend to complex urban environment. Aiming at the above problems, recognition method of street tree target was studied, which obtained the information of crown position and distance in real time and provided an accurate spraying basis for street tree toward-target spraying. The research results would improve the intelligent level of medical equipment for prevention and control of street tree and provide theoretical and technical support for street tree pest control, which had low injection, fine spraying, less pollution and high efficiency. Vehicle-borne 2D LiDAR was used to capture 3D point cloud data of street, and variable-scale grid index of point cloud was constructed to process point cloud data online and search neighborhood fast. Height, depth, density and covariance matrix features were extracted from spherical neighborhood of point cloud data, and an 11-dimensional feature vector was constructed. Distribution characteristics of features were analyzed and support vector machine algorithm based on the radial basis kernel function was used to fuse features and learn a point cloud classifier of crown. FIFO buffer was used to save point cloud frame sequences, and then street tree target can be recognized on-line. The classification error rate on the test set was less than 0.8%, with a detection rate more than 99.4% and a false alarm rate less than 0.9%. Four most discriminative features were selected, which were height mean, depth mean, height range and height variance.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李秋潔,鄭加強(qiáng),周宏平,陶冉,束義平.基于變尺度格網(wǎng)索引與機(jī)器學(xué)習(xí)的行道樹靶標(biāo)點(diǎn)云識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(6):32-37. LI Qiujie, ZHENG Jiaqiang, ZHOU Hongping, TAO Ran, SHU Yiping. Point Cloud Recognition of Street Tree Target Based on Variable-scale Grid Index and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(6):32-37.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-12-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-06-10
  • 出版日期: