亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于地理加權(quán)回歸模型的亞熱帶地區(qū)喬木林生物量估算
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)林業(yè)工程監(jiān)測(cè)技術(shù)示范推廣項(xiàng)目([2015]02號(hào))和國(guó)家林業(yè)局948項(xiàng)目(2015-4-32)


Biomass Estimation of Arbor Forest in Subtropical Region Based on Geographically Weighted Regression Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于浙江省碳匯樣地調(diào)查數(shù)據(jù),以喬木林生物量(含地上和地下生物量)為因變量,將篩選的與因變量相關(guān)性較高的因子作為解釋變量,采用地理加權(quán)回歸和協(xié)同克里格方法對(duì)喬木林生物量進(jìn)行估算,對(duì)比分析兩種估測(cè)方法的精度。結(jié)果表明:基于地理加權(quán)回歸方法構(gòu)建的喬木林生物量估算模型(R2adj=0.8204,RMSE=23.0215t/hm2)精度優(yōu)于協(xié)同克里格方法(R2adj=0.7263,RMSE=28.0549t/hm2),同時(shí)使用地理加權(quán)回歸方法的喬木林生物量預(yù)測(cè)值的變異系數(shù)(Cv=0.6189)高于協(xié)同克里格法(Cv=0.5854),由此可知地理加權(quán)回歸方法因考慮了待估變量的局部變異,比協(xié)同克里格方法具有更好的擬合結(jié)果,預(yù)測(cè)精度較高。

    Abstract:

    Accurate estimation of arbor forest biomass is of great significance for the study of forest ecological function and carbon storage. Because of the spatial heterogeneity of the survey factors, the geographically weighted regression method can estimate the local regression of variables and show a good application advantage. Based on the survey data of carbon sinks in Zhejiang Province, taking the biomass of arbor forest (including aboveground and belowground biomass) as dependent variable and factors with high correlation with dependent variable as the explanatory variables, the biomass of arbor forest was estimated by using the geographically weighted regression and co-Kriging methods and compared the accuracy of the two estimation methods. The results showed that the accuracy of arbor forest biomass estimation model (R2adj was 0.8204, RMSE was 23.0215t/hm2) constructed by geographically weighted regression method was better than that of co-Kriging method (R2adj was 0.7263, RMSE was 28.0549t/hm2).The coefficient of variation (Cv was 0.6189) of the prediction value of biomass of arbor forest using geographically weighted regression method was higher than that of the co-Kriging method (Cv was 0.5854). Because of considering the local variation of the estimated variables, the geographically weighted regression method had better fitting results than co-Kriging method, and the prediction accuracy was high. This study can provide a reference for estimating the forest biomass and other forest parameters in a wide range of tree stands by using the geographically weighting regression method.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王海賓,侯瑞萍,鄭冬梅,高秀會(huì),夏朝宗,彭道黎.基于地理加權(quán)回歸模型的亞熱帶地區(qū)喬木林生物量估算[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(6):184-190. WANG Haibin, HOU Ruiping, ZHENG Dongmei, GAO Xiuhui, XIA Chaozong, PENG Daoli. Biomass Estimation of Arbor Forest in Subtropical Region Based on Geographically Weighted Regression Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(6):184-190.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-12-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-06-10
  • 出版日期: