Abstract:The mounting height of the wing is one of the key structural parameters of the winged subsoiler, which greatly affects disturbance behavior of subsoiling. The disturbance behavior and resistance under different heights of the wing (55mm, 75mm, 95mm, 115mm and 135mm) were compared and analyzed by the comprehensive use of EDEM and digitized soil-bin test. The results showed that with the increase of mounting height of the wing (MHW), the disturbance area of hardpan layer after subsoiling was increased first and then decreased, and it reached the maximum when MHW was 75mm;moreover, the horizontal tillage resistance was decreased gradually with the increase of MHW, and the horizontal tillage resistance of the share and arc section in the hardpan layer was the main source of horizontal tillage resistance of subsoiler (more than 90%), which was also decreased gradually with the increase of MHW;MHW directly affected the displacement of different directions of soil at different depths during tillage. When MHW was 75mm, the maximum displacement in the working direction of soil of each layer in the longitudinal center of the subsoiler was relatively small, the maximum displacement in the vertical direction of the soil in hardpan layer was relatively large, and the maximum displacement in the vertical direction of the top soil and the soil of tillage layer was relatively small;and a proper mounting height of the wing was of great importance to disturbance effectiveness, and the discrete element simulation could accurately simulate the disturbance behavior of subsoiling. The average errors of five mounting heights of the wing of soil bulkiness, soil disturbance coefficient, soil fragmentation parameter and longitudinal accumulation angle of surface soil between simulation and experiment were 11.69%, 11.54%, 14.20% and 9.64%, respectively.