亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于橢圓型度量學(xué)習(xí)的小麥葉部病害識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41771463、61672032)


Recognition of Wheat Leaf Diseases Based on Elliptic Metric Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    特征提取和相似性度量是基于圖像處理的農(nóng)作物病蟲害識別方法中的兩大關(guān)鍵問題。以感染小麥白粉病的葉片為研究對象,提出了一種基于橢圓型度量學(xué)習(xí)的小麥葉部病害嚴(yán)重度識別算法。該算法首先給出了一種滑窗最大值(Moving window maximum, MWM)特征提取方法,對分割后的病斑圖像采用滑窗法提取HSV顏色特征和LBP紋理特征,在同一水平條滑窗上取每一維特征的最大值作為這一水平條的特征,這種MWM特征表示方法能有效減弱小麥葉片彎曲、傾斜、拍攝角度不同等對識別率的影響;然后,引入對樣本數(shù)據(jù)具有更好區(qū)分性的橢圓型度量,根據(jù)樣本的類內(nèi)與類間高斯分布的對數(shù)似然比定義橢圓型度量矩陣,為了保持最大化的分類信息,將特征子空間學(xué)習(xí)和橢圓型度量學(xué)習(xí)同時進(jìn)行;最后,利用得到的橢圓型度量計(jì)算特征向量之間的距離實(shí)現(xiàn)不同嚴(yán)重度病害的識別。對比實(shí)驗(yàn)結(jié)果表明,本文算法使得小麥白粉病嚴(yán)重度的識別正確率達(dá)到了100%,優(yōu)于SVM方法的88.33%、BP神經(jīng)網(wǎng)絡(luò)方法的90%。

    Abstract:

    Feature extraction and similarity measurement are two key problems of crop pest recognition based on image processing. The leaves of wheat powdery mildew were treated as the research objects, and an algorithm of wheat leaf disease severity recognition based on elliptical metric learning was proposed. Firstly, a method of moving window maximum (MWM) feature extraction was presented in the algorithm. The HSV color features and LBP texture features were extracted by using the sliding window method from the segmented lesion images. The maximum value of each dimension feature on the same horizontal sliding window was taken as the feature of this horizontal bar. The MWM feature representation method can effectively reduce the influence of curvature, tilt and different shooting angles of wheat leaves on the recognition rate. Then, an elliptical metric with better distinguishability for sample data was introduced, and the elliptic metric matrix was defined based on the log-likelihood ratio of Gaussian distributions on the intrapersonal sample and the extrapersonal sample. In order to maintain the maximal classification information, the feature subspace learning and elliptic metric learning were performed simultaneously. Finally, to recognize the severity of diseases, the elliptic metric was used to calculate the distance between the eigenvectors. The results of comparison experiments showed that the recognition rate of wheat powdery mildew severity was 100%, which was better than 88.33% for SVM method and 90% for BP neural network method. The research result can provide valuable help for the intelligent recognition of crop disease severity.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鮑文霞,趙健,張東彥,梁棟.基于橢圓型度量學(xué)習(xí)的小麥葉部病害識別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):20-26. BAO Wenxia, ZHAO Jian, ZHANG Dongyan, LIANG Dong. Recognition of Wheat Leaf Diseases Based on Elliptic Metric Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):20-26.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期: